
1

The Chinese University of Hong Kong

CSCI4999 - MHW1903

Final Year Project II

Term 2 Report

Supervisor: Prof. WONG Man Hon

Students: CHOI Ki Fung

TSANG Ka Hung

Prepared by: CHOI Ki Fung

2

Table of Content
1. Introduction ... 6

1.1. Motivation .. 6

1.1.1. Emoji .. 6

1.1.2. Chinese Calligraphy ... 7

1.2. Background .. 9

1.2.1. Generative Adversarial Network (GAN) .. 9

1.2.2. Conditional GAN (CGAN) ... 10

1.2.3. Image-to-Image Translation with Conditional Adversarial Nets

(Pix2Pix) ... 11

1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN) 13

1.2.5. Previous work ... 15

2. Data Gathering .. 16

2.1. Emoji .. 16

Unicode ... 16

Images ... 16

Description .. 17

2.2. Chinese Calligraphy ... 18

3. Data Preprocessing.. 21

3.1. Emoji .. 21

3

Preprocessing the images of emojis .. 21

3.1.1. CGAN Data Preprocessing... 22

Labels .. 22

3.2. Chinese Calligraphy ... 24

Example of the inconsistent dimension of raw collected images 26

Example of the preprocessed images .. 27

4. Neural Network Architecture Design ... 29

4.1. Overview of Generative Adversarial Network (GAN) 29

Overview of Generator ... 29

Generator Detail .. 30

Overview of Discriminator ... 31

Discriminator Detail.. 31

GAN Result ... 34

4.2. Overview of Conditional Generative Adversarial Network (CGAN) 37

Overview of Generator ... 38

Generator Detail .. 39

Overview of Discriminator ... 40

Discriminator Detail.. 41

CGAN Result and Improvement ... 42

14 conditions CGAN... 43

4

58 conditions CGAN... 54

4.3. Overview of Pix2Pix .. 60

Pix2Pix: Generator .. 61

Pix2Pix: Discriminator.. 62

Pix2Pix Methodology ... 63

Encoder-decoder network ... 63

U-net ... 64

PatchGAN ... 65

Loss function ... 66

Adversarial loss (MiniMax Loss) ... 66

Problem of Pix2Pix ... 69

4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN).......... 71

Model design ... 72

Cycle GAN: Generator (5 ResNet version) .. 72

Cycle GAN: Discriminator ... 75

Cycle GAN Methodology ... 77

Residual block (ResNet) ... 77

DenseNet ... 78

Loss function ... 78

Cycle Consistency Loss .. 80

5

Cycle GAN Encoder + Decoder Only Version Result 81

Cycle GAN U-net Version Result... 83

Cycle GAN Resnet Version Result ... 85

Cycle GAN ResNet + U-net Version Result... 88

Cycle GAN DenseNet Version Result .. 90

Non-Chinese character Result... 91

5. Difficulties and Solution ... 93

The transparency layer of the image ... 93

Either generator or discriminator is too good ... 94

Lack of Data .. 96

Future Work .. 99

Learning the overall structure of Chinese character and font style without

supervised learning ... 99

Learn multiple font styles in one network .. 99

Solve real-life problem ... 99

Division of labor ... 101

Reference .. 105

6

1. Introduction

1.1. Motivation

This project is to explore the different possibilities of Generative Adversarial

Network. Initially, we aimed to generate new emojis for daily communication.

However, the number of data we can collect for emoji is very limited. Then, we

switched our focus on Chinese Calligraphy, which has far more data and various

styles. Below, we will explain the motivations why we choose these two domains

of problem.

1.1.1. Emoji

With the rise of smartphones in the last decade, emojis were added to several

operating systems. People use instant messaging apps, like WhatsApp and

Telegram, more frequently than SMS and call. According to Quito (2019),

“Numerous studies suggest that 55% of human communication is through body

language—gestures, posture, facial expression—and 38% is conveyed by a

speaker’s tone and inflection.” However, it is limited in digital messaging. Thus,

emojis were used as ideograms to encode the sender’s emotional and social cues,

hoping that the recipient understands what he/ she is trying to convey.

The total number of emojis is 3,019 as of September 2019 (Unicode, 2019), but

some emojis use the same appearance or different skin tones. The Unicode adds

about a hundred of new emojis each year. With the development of neural networks,

we wish to use GAN to generate synthetic emojis for people to use.

7

1.1.2. Chinese Calligraphy

On top of modern emoji, another thing we desire to explore is Chinese Calligraphy.

It is one of the crucial elements of Chinese art and one of the Four Arts of The

Chinese Scholar. Besides, the history of Chinese Calligraphy can be traced back to

the Oracle bond script, the first form of Chinese characters, in 1300 B.C. Then,

Chinses Calligraphy derived into different stream and style, for example, Clerical,

Cursive, Semi-cursive, Regular script (隷書、草書、行書、楷書).

However, in the modern world, people have been using computers and mobile

phones. We seldom write on paper, let alone calligraphy. Fewer and fewer people

know how to calligraph, and fewer and fewer calligrapher.

Moreover, some of the greatest Chinese calligrapher’s artworks have passed

through centuries down to this day. However, there is only a limited number and

character. What if Wang Xizhi(王羲之) can write a Fai Chun for me? Or Su Shi(蘇

軾)?

Locally, we have seen Chinese Calligraphy every day from the street sign and

minibus sign. Sadly, some of the authors of these signs are passed away, and this

kind of art is diminishing. For example, Uncle Lee1 who was a street calligrapher

with his work at every corner, Tsang Tsou Choi2, a.k.a King of Kowloon, famous

1 https://www.facebook.com/pg/leehonhk
2 https://en.wikipedia.org/wiki/Tsang_Tsou_Choi

8

for his calligraphy graffiti, and Mr. Mak3, the last minibus sign designer in Hong

Kong.

Replicated work of Uncle Lee

The last minibus sign designer

Therefore, we wish to use GAN to capture the style of these calligraphers and

regenerate them with different possibilities.

3
https://www.eldage.com/pages/%E6%89%8B%E5%AF%AB%E5%B0%8F%E5%B7%B4%E7%
89%8C%E5%B7%A5%E4%BD%9C%E5%9D%8A

9

1.2. Background

1.2.1. Generative Adversarial Network (GAN)

GAN is a deep neural network proposed by Goodfellow, et al. in 2014. GAN

comprises two neural networks, a generator, and a discriminator. The generator

takes a random number from the latent space, where features lie, to generate a

sample. It could be an image, audio, text, etc. The generated samples are then mixed

with the real samples to form batches of training data and feed into the discriminator.

For each of the input samples, the discriminator has to classify that it is a real-world

sample or a sample generated by the generator. Then, a loss function uses the result

to calculate the loss and update the models. If the discriminator successfully

identifies a sample, it will be rewarded for recognizing the generator’s flaws.

Similarly, if the generator successfully fakes a sample without being caught, it will

be rewarded for generating more samples like that one.

Illustration of GAN

10

1.2.2. Conditional GAN (CGAN)

Though GAN produces a plausible and similar result inferring from a given dataset,

we may want a concise outcome in real life instead of a random, uncontrollable one.

Conditional Generative Adversarial Nets, CGAN, is an extension of GAN with the

ability to generate sample on a class label (Mirza & Osindero, 2014). CGAN is

merely adding the labels as an additional layer, but the modification has to be

carried out on both generator and discriminator for balance. The generator takes a

random number from latent space z given a label y and outputs a synthetic sample.

The discriminator takes a sample x, which can be from the generator or real-world,

given the label y and predict the authenticity of x.

Illustration of CGAN. (Mirza & Osindero, 2014)

11

1.2.3. Image-to-Image Translation with Conditional Adversarial Nets

(Pix2Pix)

Pix2Pix is an astonishing network that solves the image-to-image translation

problem (Isola, Zhu, Zhou, & Efros, 2017). After the network is trained, it

developed a generic loss function that is dedicated to a specific domain of image

mapping, such as mapping a satellite image to a map. When switching to another

domain, the only thing to do is just training on a different set of data, and the

architecture of the network does not need to be changed.

Example usage of image-to-image translation problems. (Isola, Zhu, Zhou, & Efros, 2017)

Pix2Pix is derived from CGAN, where, in this time, the synthetic image is based

on the input image. In the training phase, the network generator is fed with the

source image. In this time, the discriminator is not only provided the generated

image. Both the source and the generated images are given to increase the power

of the discriminator. The generator and decimator battled again each other, in an

adversarial manner.

12

Although Pix2Pix based on CGAN, Pix2Pix tweak the internal component of the

network to make it more robust and giving more promising result.

13

1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN)

In Pix2Pix, image-to-image translation is trained using a set of paired training

images, e.g., a set of photography(input) and a set of corresponding desired

painting(output). However, most of the time, our training data is unpaired; for

example, the paintings do not depict the same scene in the photographs. One of the

reasons is that it is merely expensive to prepare the paired dataset, e.g., hiring

someone to do the painting. Another reason is that the data is in the past, e.g., a

painting by Van Gogh.

Cycle GAN is an unsupervised learning network to solve this unpaired image-to-

image translation (Zhu, Park, Isola, & Efros, 2017). Cycle GAN is able to extract

general characteristics from two sets of unrelated images and exploit that in the

image translation process. Traditional GAN has a problem called mode collapse,

which is the generator found out an especially plausible output that can fool the

discriminator and generate only that output. The variety of output of the GAN is

lost in mode collapse. There is a possibility that the generator generates an output

that has no correlation with the input while fooling the discriminator. To alleviate

this problem, Cycle GAN uses a technique called cycle consistency.

14

The basic structure of Cycle GAN. (Zhu, et al., 2017)

The idea is to implement two GANs (G & F). The newly introduced GAN F is to

translate the output image back to the input image. Because if we can revert to the

input image, it proves that the G is not generating an arbitrary image but actually

doing the translation.

15

1.2.5. Previous work

We found user ‘anoff’ on GitHub has developed a deep emoji generative

adversarial network about generating new emoji4.

This project provides some different network designs and hyperparameters to try to

generate new emojis with DCGAN. Here is his final sample:

We found that this project’s final sample looks like the same. Most of them contain

dot eyes and a smile/poker face. Moreover, some of the quality is bad. We want to

improve this project by designing a new GAN network. Also, trying to provide

some condition on the emoji so we can somehow control what we expect the emoji

look like.

4 https://github.com/anoff/deep-emoji-gan

16

2. Data Gathering

A well begun is half done. The quality and quantity of data are undoubtedly the

factors of yielding a good result. Therefore, here we identify the critical data that

needs to be collected here and the reason why.

2.1. Emoji

Before collecting any data, we identified three types of data are needed. First is the

Unicode that defines an emoji. Second is the raw images of emojis, which have to

in a consistent dimension. The third is the description of an emoji, which is essential

to construct a CGAN.

Unicode

The Unicode is the unique value to identify an emoji, e.g., � = 1F600. We

discovered that Dabbas(2019) has already maintained an up-to-date emoji database

in CSV format with 3827 entries in Kaggle5 which is an online website to find and

publish data sets. Each emoji is paired with a Unicode value and groups. The

Unicode value can be used to extract the corresponding emoji image in another

repository.

Images

Though the Unicode Standard is the unified consortium to design or approve the

new emoji, the Unicode characters are more about the “identity” rather than the

5 https://www.kaggle.com/eliasdabbas/emoji-data-descriptions-codepoints

17

appearance, in consequence, there are different sets of emoji from each company,

just like different fonts for English characters.

 Downcast face emojis from Apple, Facebook, Google, Messenger, and Twitter.

A GitHub repository6 has collected groups of emoji photos and provided a way to

parse emoji data and images easily. It contains a JSON file about the meta-data of

the emojis, like the image file name of the emoji, and whether a company has

published an emoji.

Description

The description of an emoji is useful for building up the neural network. However,

there is no secondhand data which was made by other people before. We have to

input the description of an emoji one by one. Using the database from Kaggle, we

add a new column about the characteristic of the emojis.

emoji name codepoints labels

😀😀 grinning face 1F600 face, grinning, smiling, joy, teeth, pleasure, cheer, open
eyes, open mouth

😃😃
grinning face with big
eyes 1F603 face, grinning, smiling, joy, teeth, big eyes, oval eyes,

open mouth

😄😄
grinning face with
smiling eyes 1F604 face, grinning, smiling, joy, laughing, smiling eyes,

squinting eyes, open mouth, teeth

😁😁
beaming face with
smiling eyes 1F601 face, beaming, smiling, joy, laughing, smiling eyes,

Cheese, teeth, warm, gratified, proud, amused

Labeled Excel Data

6 https://github.com/iamcal/emoji-data

https://github.com/iamcal/emoji-data

18

2.2. Chinese Calligraphy

There are three parts for the data about the Unicode, font, and handwritten word.

Unicode

The Unicode is the unique value to identify different Chinese characters, e.g., 一 =

\u4e00. We discovered that most of the traditional Chinese characters are in the

range of \u4e00 to \u9fd5, which contains about 20949 of traditional Chinese

characters. We make a JSON file to store all those Unicode for further usage.

Font

In a modern computer operating system, there are many build-in fonts on the OS.

For Windows 10, there are two font styles which are related to traditional Chinese

characters which are MingLiU(新細明體) and DFKai-SB(標楷體). We can

directly get their TrueType file(.ttf), which is the standard format for fonts on the

OS. Also, we collect some more font on the internet7, which is 王羲之書法字體

(we name it hzwong).

By collecting fonts, we can convert the font characters into images. This

significantly reduces the effort required to prepare a paired dataset for training the

network. The details of the operation will be elaborated in the Methodology section

below.

7 http://www.diyiziti.com/

19

Handwritten word

There are two types of handwritten words. First one is scraped from 「陳忠建字

庫」 8 . Unfortunately, unlike emoji, there is currently no related database or

repository that archives Chinese calligraphy. 「陳忠建字庫」 is a personal

website of a calligrapher, Mr. Chen Chung Chien, which stores over 210,000 of his

own handwritten Chinese calligraphy images with various style. We use a python

package called Beautiful Soup to pull the data from the website. First, we go to the

album page of the website and extract all the images page by page. In Figure 1, the

source of the image and the text label are encapsulated in the tags.

Example of the image and the corresponding DOM element

However, as our program hit the server too frequently, the webserver crashed and

banned Hong Kong IP addresses for a period of time. At this point, we scraped

about 14,000 images. We deem that it is enough for training the model referring to

the last experiment we did in the last term.

The second type of data is the handwritten Chinese characters written by us. We

pick around 1000 commonly used Chinese characters from CUHK HUMANUM9

8 http://163.20.160.14/
9 https://humanum.arts.cuhk.edu.hk/Lexis/lexi-can/faq.php

20

for our project and write those Chinese characters on Windows Paint and paper

with size 256x256.

Handwritten word by using paint with size 256x256

Handwritten word on paper with size 256x256

21

3. Data Preprocessing

The data we collected from the web or prepared by us need to be adjusted for

consistency before training. For instance, the dimension, format, and position of the

images.

3.1. Emoji

The images extracted from the GitHub repository we mentioned earlier are filtered

by the Unicode we specified and turned into a NumPy array. Since the images were

encoded in PNG format, the transparency channel should be removed, i.e., turning

the transparent pixel to a white background. Then, scale down the image pixel value

from 0 ~ 255 to -1 ~ 1, which is generally a common trick to normalize an image

in building a neural network.

Preprocessing the images of emojis

22

3.1.1. CGAN Data Preprocessing

Labels

The images of the emojis and the labels have to be fed into the neural network, but

the network cannot directly take as inputs. We used Pandas10, a data manipulation

and analysis tool, to preprocess the data. We turned the description into One-Hot

Encode data using Pandas, resulting in a 91 rows x 420 columns table.

First, we use Pandas to read our CSV file and save it to a dataframe(df). We select

the first 91 emojis, which are face emojis only.

Then, we transform the “labels” column, which describes the emoji by words into

one-hot encoding.

10 https://pandas.pydata.org/

23

Next, we drop the original “labels” column and concatenate our newly created one-

hot labels to the dataframe. Finally, we drop the “name,” “group,” “sub_group,”

and “codepoints” columns, which are unnecessary for training the neural network.

Final and neat labels of the emojis

24

3.2. Chinese Calligraphy

Two preprocessing tasks have to be carried out for the font from .ttf file and the

image collected on the Internet.

For the font collected from the .ttf file. We need to make Chinese characters become

images and feed into the neural network. We use the pillow(PIL) library11 , which

is a Python Image Processing Library to make a simple program to generate those

images. For each Unicode, we create a new image with a size 256x256 match with

different font. Store the image into separate folders categorize by the font family.

Code of generating Chinese Characters by font

After that, by manually checking all the generated images, some images are non-

Chinese characters or blank image because the font does not have a design for that

Unicode. We handpicked it up and deleted it.

11pillow(PIL) library https://pillow.readthedocs.io

25

Non-Chinese Characters and Blanked Generated image

As a result, MingLiU has 18554 images, DFKai-SB has 18542 images, and hzwong

has 6861 images.

MingLiU font Chinese Characters

DFKai-SB font Chinese Characters

26

hzwong font Chinese Characters

For the image collected from the Internet. The images of calligraphy that we

collected come with different dimensions. The neural network normally has a fixed

size in the input layer, so we have to resize the image to a consistent resolution.

Example of the inconsistent dimension of raw collected images

27

Example of the preprocessed images

Because of the large number of images, it is inefficient for us to resize each of them

one by one. We used an open-source software called ImageMagick12 to do batch

image processing. Since the raw images are not in the 1:1 aspect ratio, we have to

first scale up the images uniformly. Then, set the canvas size to 256x256 and shift

the images to the center. Finally, fill the unoccupied area with white color to act as

a background.

Before the image is loaded into the network. For all Chinese character images, we

do a process called random jitter, which means we enlarge the image from

256x256x3 to a larger scale. Then random crop the image back to 256x256x3 and

randomly flip the image horizontally. This process will improve model training and

make the model not easy to overfit.

12 https://imagemagick.org/

28

Code of random jittering

After that, we do the same thing like emoji images to normalize the image from

image pixel value from 0 ~ 255 to -1 ~ 1.

29

4. Neural Network Architecture Design

4.1. Overview of Generative Adversarial Network (GAN)

Overview of Generator

30

Generator Detail

noise_dim: Input Layer
input: (None, 100)

output: (None, 100)

dense: Dense Layer
input: (None, 100)

output: (None, 32768)

reshape: Reshape Layer
input: (None, 32768)

output: (None, 8, 8, 512)

conv2d_transpose_1: Conv2DTranspose Layer
input: (None, 8, 8, 512)

output: (None, 16, 16, 128)

batch_normalization: BatchNormalization Layer
input: (None, 16, 16, 128)

output: (None, 16, 16, 128)

leaky_re_lu: LeakyReLu Layer
input: (None, 16, 16, 128)

output: (None, 16, 16, 128)

conv2d_transpose_1: Conv2DTranspose Layer
input: (None, 16, 16, 128)

output: (None, 32, 32, 64)

batch_normalization_1: BatchNormalization Layer
input: (None, 32, 32, 64)

output: (None, 32, 32, 64)

leaky_re_lu_1: LeakyReLu Layer
input: (None, 32, 32, 64)

output: (None, 32, 32, 64)

conv2d_transpose_2: Conv2DTranspose Layer
input: (None, 32, 32, 64)

output: (None, 64, 64, 3)

tanh activation: Activation Layer
input: (None, 64, 64, 3)

output: (None, 64, 64, 3)

31

Overview of Discriminator

Discriminator Detail

images: Input Layer
input: (None, 64, 64, 3)

output: (None, 64, 64, 3)

conv2d: Conv2D Layer
input: (None, 64, 64, 3)

output: (None, 32, 32, 64)

leaky_re_lu_2: LeakyReLu Layer
input: (None, 32, 32, 64)

output: (None, 32, 32, 64)

dropout: Dropout Layer
input: (None, 32, 32, 64)

output: (None, 32, 32, 64)

32

conv2d_1: Conv2D Layer
input: (None, 32, 32, 64)

output: (None, 16, 16, 128)

batch_normalization_2: BatchNormalization Layer
input: (None, 16, 16, 128)

output: (None, 16, 16, 128)

leaky_re_lu_3: LeakyReLu Layer
input: (None, 16, 16, 128)

output: (None, 16, 16, 128)

dropout_1: Dropout Layer
input: (None, 16, 16, 128)

output: (None, 16, 16, 128)

conv2d_2: Conv2D Layer
input: (None, 16, 16, 128)

output: (None, 8, 8, 256)

batch_normalization_3: BatchNormalization Layer
input: (None, 8, 8, 256)

output: (None, 8, 8, 256)

leaky_re_lu_4: LeakyReLu Layer
input: (None, 8, 8, 256)

output: (None, 8, 8, 256)

dropout_2: Dropout Layer
input: (None, 8, 8, 256)

output: (None, 8, 8, 256)

flatten: Flatten Layer
input: (None, 8, 8, 256)

output: (None, 16384)

dense_1: Dense Layer (activation: sigmoid)
input: (None, 16384)

output: (None, 1)

33

Loss function:

We tried two different loss functions to try to build the network. They are Minimax
loss and Wasserstein loss.

Minimax Loss

D(x) is the probability of the discriminator’s estimate the real image x is real

G(z) is the generator’s output when given noise z

D(G(z)) is the probability of the discriminator’s estimate the fake image x is real

Ex is the expected value of all the real images

Ez is the expected value of all the fake images

The generator aims to minimize this function while the discriminator aims to
maximize this function.

In the GAN that we build with minimax loss function, the activation of the output
layer in the discriminator is sigmoid, and the optimizer is Adam.

Wasserstein Loss

Wasserstein loss in discriminator is not output the range (0, 1) to classify the image
is real or not. It outputs a number only to try to make the number of real images is
much bigger than the number of fake images.

Discriminator loss: D(x) - D(G(z))

The discriminator tries to maximize the value of this function

Generator loss: D(G(z))

The generator tries to maximize the value of this function

We follow the suggestion in the paper of Wasserstein GAN (Arjovsky, Martin,
Soumith, & Léon. , 2017), the activation of the output layer in the discriminator is
linear, and the optimizer is RMSProp.

34

GAN Result

Using the GAN architecture similar to ‘anoff’ one (https://github.com/anoff/deep-
emoji-gan):

Epoch 2505, using minimax loss function (first_gan.py)

Epoch 25305, using Wasserstein loss function (cwgan.py)

35

Using the GAN model mention above using minimax loss function

(DCGAN.ipynb):

Epoch 8900

Epoch 9700

36

The above result of different loss functions shows that minimax loss function seems

to have a better result with less training epoch. Therefore, when we build our

conditional-GAN, we would like to use the minimax loss function in our model.

37

4.2. Overview of Conditional Generative Adversarial Network (CGAN)

We used the concept of DCGAN as our model base (Radford, Metz & Chintala,

2016). And followed the idea provided by Conditional Generative Adversarial Nets

(Mirza & Osindero, 2014)

38

Overview of Generator

39

Generator Detail

40

Overview of Discriminator

41

Discriminator Detail

42

CGAN Result and Improvement

When we used the preprocessing method above to make the label as the condition,

the generated emoji was not following the label. It was no different from the normal

GAN, and we cannot control the generated emoji we wanted. The problem of the

initially provided label in the dataset is that it contains too much label. It contains

a total of 418 labels. If we took an in-depth look into it, those labels are too specific.

For example, this emoji contains [face, grinning, smiling, joy, teeth,

pleasure, cheer, open eyes, open mouth]. That is a total of 9 labels for one emoji.

This is way too much and shows that most of the labels are similar.

Therefore, we decided to make the label of each emoji by ourselves. We are not

just lowering the amount of the label, but also making the label more general and

not similar to each other.

We marked the label focusing on three main parts of the emoji – eye, mouth, and

other special effects. The example of other special effect is like these two emoji:

1f62f.png contains the eyebrow. 1f63a.png is a cat.

43

14 conditions CGAN

To start with something simple to test it works. We picked the most general label

as our condition. Here is the table of our labeling, there is a total of 14 labels:

Eye

heart_eye m_eye sad_eye dot_eye

poker_eye Xd_eye

Mouth

smile tougue laugh o_mouth

poker_face sad_mouth

44

Other

eye_brow cat

As we just selected a few conditions, it let some emoji cannot fit the condition.

Therefore, we just provided a total of 48 different emojis and a total of 236 samples

to train the conditional-GAN.

45

As we self-defined our CSV file (face_emoji/emoji_onehot.csv), we needed to

modify our preprocessing method to handle the label that can feed into our model.

First, we loaded all the image paths from the file paths and stored them into a list.

Then we filtered the image paths by their filename is existed in our CSV file.

Furthermore, we also needed their file name to match our CSV file, so we stored

those names into another list.

46

Next, we needed to create one-hot encoding labels. We made a Numpy array that

the size is matching our total number of the label.

After that, we needed to change the label input shape of our generator and

discriminator. In this case, the input shape is 14.

Here is some result after training 5000 epochs:

47

label: dot_eye, laugh

label: heart_eye, o_mouth

label: poker_eye, poker_face

label: sad_eye, sad_mouth, cat

label: xd_eye, smile, eye_brow

We found that some of the generated emoji can produce an emoji that matches the

label. However, there was some mistake in matching the label. For example, xd_eye

48

cannot show on our model, and some emoji label with the cat did not look like a

cat. The model was not stable enough to produce the emoji that matched our label.

After checking the training loss, we found that the generator loss kept increasing

while the discriminator kept its loss low. That meant the discriminator is

dominating the generator.

Batch size = 32, discriminator learning rate = 0.0001, generator learning rate =

0.0002, 5000 epochs

49

Therefore, we tried changing different parameters to see if the generator loss can

be better, and the image generated can be better to match the label.

Batch size = 8, discriminator learning rate = 0.0001, generator learning rate =

0.0002, 10000 epochs

Label

dot_eye, laugh heart_eye, o_mouth poker_eye, poker_face

sad_eye, sad_mouth, cat xd_eye, smile,

eye_brow

50

Batch size = 128, discriminator learning rate = 0.0001, generator learning rate =

0.0002, 10000 epochs

Label

dot_eye, laugh heart_eye, o_mouth poker_eye, poker_face

sad_eye, sad_mouth, cat xd_eye, smile, eye_brow

51

Batch size = 8, discriminator learning rate = 0.0001, generator learning rate =

0.001, 10000 epochs

label

dot_eye, laugh heart_eye, o_mouth poker_eye, poker_face

sad_eye, sad_mouth, cat xd_eye, smile, eye_brow

52

Batch size = 8, discriminator learning rate = 0.00005, generator learning rate = 0.0002,

10000 epochs

label

dot_eye, laugh heart_eye, o_mouth poker_eye, poker_face

sad_eye, sad_mouth, cat xd_eye, smile, eye_brow

The above result shows that batch size = 8 have a better-generated emoji because

those label condition we tested seems to have more correctness than batch size =

128. For example, batch size = 8 can generate sad_mouth as expected but batch size

= 128 cannot. Adjusting the learning rate of the generator higher seems to have not

53

much different while adjusting the learning rate of discriminator lower makes the

result worse. For example, the model even cannot generate a cat or heart_eye while

others can.

As a result, we can just modify the batch size smaller to make a slightly better result,

but the result was still not good enough.

Also, we found out that no matter how we modify the parameters. The generated

emoji with labels dot_eye and laugh always can be generated as expected. By

checking our inputted emojis, we found out that dot_eye and laugh had many

emojis that were labeled by them. Moreover, when we marked the label in the CSV

file, we made similar eye/mouth batch together in one label. For example, these

three emojis we all labeled them with a smile, but

actually, they have different smiles.

Therefore, we thought that if we increase the number of our training data and make

the label more specific, we can make other labels can be generated as expected too.

54

58 conditions CGAN

As a result, in our second try, we designed a total of 58 labels:

Eye

m_eye m_eye_small small_w_eye heart_eye

sunglass tadpole_eye bold_one_eye dot_eye

0_eye XD eight_eye cry

cat_eye laugh_tear twinkie_eye dash_eye

white_eye x_eye star_eye

Mouth

smile small_smile l_smile l_smile_v2

laugh laugh_R 3_mouth n_mouth

55

small_n_mouth big_n_mouth open_n_mouth 0_mouth

o_mouth big_o_mouth cruse_mouth dash_mouth

small_dash_mouth ww_mouth tougue side_tougue

teeth laugh_teeth laugh_teeth_full omg

mask open_small_n_mouth

Other

red_face eye_brow nose_water cat

tear swearing angle devil

56

heart sad blue_head sleep

Shy

Based on the above labels, we provided a total of 68 different emoji and a total of

331 samples to train the conditional-GAN. Some of the emojis are labeled as the

following:

 m_eye, smile, shy

 m_eye, side_tougue

 small_w_eye, small_smile, eye_brow

 dot_eye, small_n_mouth, eye_brow, red_face

57

Then, we made a one-hot encoding CSV file that labeled each face emoji one-by-

one. Here is part of the original data in the file: (face_emoji/emoji_onehot_v2.csv)

58

We used the same method as 14 conditions CGAN to preprocess the data and input

to our model. Here were some results after training 10000 epochs. We found out

that some of the results look accurate based on our set condition. For example:

Label: sunglass, 3_mouth

Label: dot_eye, tongue, blue_head

Label: star_eye, smile, shy

59

We observed that some of the results are not what we expected. After checking our

self-made one-hot CSV file, we found out that some of the labels just used on one

emoji only. For example, star_eye just used on 1f929.png .

Therefore, we got the same problem when we are testing 14 conditions CGAN. We

thought that the lack of training data is our leading problem that made our CGAN

hard to find the pattern of condition.

60

4.3. Overview of Pix2Pix

Based on the knowledge of the CGAN and Pix2Pix. We built the GAN model, as

shown. The general structure between CGAN and Pix2Pix is similar except the

input of Pix2Pix is an image not a point from the latent space, and the label of

Pix2Pix becomes a target image, not an integer array.

61

Pix2Pix: Generator

Below is the U-net structure where the first half is the encoder, and the second half

is the decoder. The layer with the same output size in the encoder and the decoder

has a connection between causing the skip connections.

62

Pix2Pix: Discriminator

Based on the pix2pix paper (Isola, Zhu, Zhou, & Efros, 2017), the discriminator is

a PatchGAN where the output is a (batch size, 30, 30, 1) shape. Each 30x30 patch

of the output classifies a 70x70 portion of the input image, which means that we

manually chopped up the image into 70x70 overlapping patches, run a regular

discriminator over each patch, and averaged the results.

63

Pix2Pix Methodology

Encoder-decoder network

Based on the paper of the encoder-decoder network (Hinton, 2006). The encoder

takes the images as input. Then each layer is gradually downsampled until the last

layer, which is the bottleneck layer, and it outputs a feature vector. On the other

hand, there is a decoder with the exact network architecture as encoder but in a

reverse direction. On the contrary, the decoder tries to output as closely related as

the original input as possible.

Encoder-decoder. (Hinton, 2006)

Nevertheless, in real-life applications, researchers usually do not use it to

reconstruct the original input. Instead, it is used to map and translate to the certain

desired output, for instance, highlighting a particular object in an image.

64

U-net

U-net is the generator in Pix2Pix adopts (Ronneberger, Fischer, & Brox, 2015). In

essence, U-Net is an improved version of encoder-decoder. U-Net has the same

architecture of encoder-decoder but with the addition of skip connections. Isola et

al. (2017) stated that it is specially picked to handle translation problems, “there is

a great deal of low-level information shared between the input and output, and it

would be desirable to shuttle this information directly across the net.” As mentioned

in the previous paragraph, encoder-decoder has a bottleneck layer in the middle,

and some information might be lost during the process.

U-Net. (Isola, Zhu, Zhou, & Efros, 2017)

In the above figure, the layers with the same size in encoder and decoder are linked

together. Those links allow the information to circumvent the bottleneck. Because

of this, U-Net yields a better result than encoder-decoder as tested in the author’s

paper.

65

U-Net produces a much better result. (Isola, Zhu, Zhou, & Efros, 2017)

PatchGAN

Isola et al. introduced a new network called PatchGAN to enhance the discriminator.

In a normal GAN discriminator, a deep convolutional neural network is used to do

the classification. As the name suggests, the PatchGAN classify patches of the input

images as fake or real instead of the whole image. In detail, the image is split into

NxN patch or grid. The discriminator will determine each patch as fake or real

convolutionally. The output is a feature map that consists of predictions that can

map to a specific size of the source image. Then, averaging all the patches yields

the final output of the discriminator. The advantage of PatchGAN is that it can take

arbitrary sized images as input. Besides, Isola et al. (2017) found that a 70x70 patch

size performed well across various image-to-image translation problems.

66

Loss function

Adversarial loss (MiniMax Loss)

It is similar to the original GAN loss function, but some of the input parameters is

different.

x is the real input image

y is the ground truth/target image

D(x, y) is the probability of the discriminator’s estimate the real image x and ground

truth image pair is real

G(x) is the generator’s output when given image x

D(x, G(x)) is the probability of the discriminator’s estimate the fake image G(x)

and ground truth image pair is real

Ex is the expected value of all the real images and ground truth image pair

Ey is the expected value of all the fake images and ground truth image pair

The generator aims to minimize this function while the discriminator aims to

maximize this function.

67

Pix2Pix Result

As the training of the pix2pix needs to match the same image of the source image

and the target image (ground truth). We made a program to combine two same

Chinese characters of different font/handwritten words to one image. Here are some

examples of the images:

(the left character is the ground truth; the right character is the source image)

Combined image with handwritten image as input, hzwong as ground truth

Combined image with DFKai-SB image as input, hzwong as ground truth

Then we put these images into the train folder for training the network and the test

folder for output some samples for us to evaluate.

68

Our first training is using DFKai-SB font as the source image and MingLiU font as

ground truth to test our model is really working as these two fonts look very similar

in style. Here is some result after 50 epochs with batch size 1: (left image is the

source image, the middle is ground truth and the right is generated image)

We can observe that the generated image is very similar to the ground truth. It

shows that our network is working.

Then we use DFKai-SB font as the source image and hzwong font as ground truth

to put into the same network to test our model, and the result is like this:

By just observing the photo, we can notice that the generated image become not

similar to the ground truth, and some of the generated images cannot recognize the

character such as 「牛」「級」.

69

When we use our handwritten word as the source image and hzwong font as ground

truth. We cannot recognize any of the generated image’s Chinese characters. The

result gets worse than before:

Problem of Pix2Pix

We think the problem is about the similarity of different Chinese characters in the

same font. For the font like DFKai-SB and MingLiU. Their structure of the Chinese

characters is precise and rigid. For example, the Chinese characters of DFKai-SB

. We can notice that the radical 「言」of these two images are in exactly

the same place. Moreover, their stroke (e.g.橫豎撇捺點) on different Chinese

characters looks the same on their font. For example, in the below figure, these 4

Chinese characters in DFKai-SB font have four same stroke styles of 捺.

70

In the case of hzwong font and handwritten Chinese character, because both of them

are handwritten characters. We cannot make the character precise and rigid on the

pixel level. So it causes each character to have a slightly different style, but the

model cannot generalize the difference. For example, these 4 Chinese characters in

hzwong font have four different stroke styles of 捺.

As a result, we need to make the model more general to learn the style of the font.

We need to make the model not learning by the one-to-one Chinese character font,

but learn by all the Chinese characters of the font. That means we need an unpair

image for training.

71

4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN)

We based on the Pix2pix network and followed the idea provided by Cycle-

Consistent Adversarial Networks (Zhu et al. 2017) to create our model.

72

Model design

Cycle GAN: Generator (5 ResNet version)

The first part of the generator is the encoder, which will extract the features from

the image. Then it will go to the transformation part, which is the ResNet to

combining the feature of 2 different font/handwriting. The last part is the decoder,

which reconstructs the image by the feature and the transformed feature of the

image as output.

73

74

75

Cycle GAN: Discriminator

The architecture of discriminator is nearly the same as Pix2Pix’s discriminator,

except we do not have the target image as the second input.

76

77

Cycle GAN Methodology

Residual block (ResNet)

According to the cycle GAN paper, when they build the generator, they use several

residual blocks as a transformer between encoder and decoder. According to the

Deep Residual Learning paper (He, Zhang, Ren, & Sun, 2016). Residual block is

creating a short cut connection on the plain network. One of the functions is to

ensure the properties of input of previous layers are available for later layers as well.

In handwriting style changing, we need to keep the handwritten Chinese character

in its own shape when passing through each layer of the generator, making the

output image will not be extremely different from the original input.

Another function is that when the training progress is nearly saturated, it will cause

the identity mapping problem, which means that the layer’s parameter will not

change scientifically, making the accuracy of the model decrease. As the property

of backpropagation is started tuning the layer near the output layer, the higher layer

of the model cannot be well trained. ResNet can train the model better because the

skip connection makes the backpropagation process can train the higher layers even

through, the lower layers are well trained.

A plain layer compares to the residual block (Zhang, Ren, Sun, & Jian. (2015))

78

DenseNet

5-layer DenseNet Block (Huang, Liu, Maaten, Weinberger. 2018)

The paper Densely Connected Convolutional Networks (Huang, Liu, Maaten &

Weinberger, 2018) suggest a new network architecture that can improve

information flow between layers with different connectivity pattern. It is similar to

ResNet but more skip connection. The concept is that the layer will have a direct

connection to all subsequent layers to implement feature reuse and increase the

efficiency to train the network.

Loss function

For discriminator, we use the same loss function of Pix2Pix. For generator, include

the similar adversarial loss from Pix2Pix, we add one more loss function that is

called cycle consistency loss.

79

Adversarial loss

the first formula is generator x to y and its discriminator DY

the second formula is generator y to x and its discriminator DX

x is the real input image (style1)

y is the target image (style2)

DX(x) is the probability of the discriminator’s estimate the real image x is real

DY(y) is the probability of the discriminator’s estimate the real image y is real

Gx->y (x) is the generator x to y’s output when given image x

Gy->x (y) is the generator y to x’s output when given image y

DX(Gy -> x (y)) is the probability of the discriminator’s estimate the fake image
Gy->x (y) is real

DY(Gx -> y (x)) is the probability of the discriminator’s estimate the fake image
Gx->y (x) is real

EX is the expected value of real images x or fake images x

EY is the expected value of real images y or fake images y

Both generators aim to minimize the function while both discriminators aim to

maximize the function.

80

Cycle Consistency Loss

This model does not need to pair the image data to do the style transformation.

Cycle consistency loss is the supervising signal for the model training. This concept

explains that when a source image A (x) transform to image B (G(x)) by the

generator A to B (G) then use the generate image B (G(x)) transform back to image

A (F(G(x))) by the generator B to A (F). In theory, the source image A (x) and the

cycled image A (F(G(x))) should be looking the same. Therefore, when training the

model, the difference between the source image A and the cycled image A and the

difference between the target image B and the cycled image B will be the loss of

both generators. In math formula, it will look like this:

Lcyc-x = |𝑥𝑥 − 𝐹𝐹(𝐺𝐺(𝑥𝑥))|�������������������

Lcyc-y = |𝑦𝑦 − 𝐺𝐺(𝐹𝐹(𝑦𝑦))|�������������������

Lcyc-total = Lcyc-x + Lcyc-y

Therefore, the total loss of the generator = generator’s adversarial loss + Cycle

consistency loss.

81

For all the results below. Unless further specify some parameters, we are using 15

epochs for training, batch size = 1, learning rate = 0.0002 with Adam optimizers,

and using the same discriminator. Furthermore, those images show below are all

unseen images when training the network.

Cycle GAN Encoder + Decoder Only Version Result

To test our Cycle GAN training progress is working. We implement the basic

encoder-decoder only generator. Moreover, as the baseline for further improving

our generator comparison.

82

We can observe that by just using the encoder-decoder architecture, the generated

image can learn some of the styles from hzwong (marked as red circle).

83

Cycle GAN U-net Version Result

Next, we are trying to modify the generator of Cycle GAN to the U-net structure,

just like Pix2Pix’s generator. As mention above, the U-net structure also using the

similar architecture of encoder-decoder except for the encoder, and the decoder will

down/unsampled until the bottleneck layer reached, and it added the skip

connection to directly pass the feature from the input image between encoder and

decoder.

As a result, we move the generator of Pix2Pix and port into Cycle GAN’s generator

and use our handwritten and hzwong font with the same setting to train the network.

The result as follow:

(left side is the handwritten input image; the right side is the generated image)

84

By just observation, we can see not much different compare with the encoder-

decoder only network result.

In addition, we tested on the characters from Mr. Chen Chung Chien and our other

handwritten style on a network trained with 16 batch size and 100 epochs.

From the above result, we can observe that the overall structure of the characters is

generated. Nevertheless, in some complicated words (second row), the lines are

85

tangled. Still, we can see some characteristics in Chinese calligraphy. In 橫畫 and

豎畫, the network utilizes the concept of 起筆 and 收筆 13.

Cycle GAN Resnet Version Result

This time, we use ResNet block to the generator mention on the network

architecture above, but we use three blocks of ResNet first. We use DFKai-SB font

and hzwong font to test our network is working. The input image below is all

unseen images.

(left side is the DFKai-SB font input image; the right side is the generated image)

13 http://163.20.160.14/~ntc/mod/page/view.php?id=22

86

As we can observe clearly, the input image with DFKai-SB font and the generated

image with hzwong font is nearly identical. Cycle GAN does not need to pair the

image data between 2 fonts. There is no ground truth as the target image to move

the shape of the Chinese character, so the stroke placement in the image are the

same. Moreover, if we observe carefully, we can observe that the style has changed

a little that looks like hzwong font. As a result, it is hard to tell that our network is

working or not.

Therefore, in our second approach, we use our handwritten and hzwong font to train

the network with three blocks of ResNet. The result is as follow:

(The left side is the handwritten input image; the right side is the generated image)

87

This time we can clearly see that the style changing of the handwritten Chinese

character. We can observe that some styles of hzwong font can be learned (mark as

a red circle on the image). However, we notice some problems that if the strokes of

the input image are really close to each other, the generated image’s strokes will

overlap with each other(mark as a green circle on the image). But the overall result

is still acceptable.

So we try to add more blocks of ResNet to check if it has any improvement. Below

is the 5 ResNet block of the generator with unseen image:

(The left side is the handwritten input image; the right side is the generated image)

88

We can notice some improvements in the generated Chinese characters. The shape

of the image is clearer. For example, the dot of the character 「絲」, the bottom

right part of the character 「張」. They look sharper and show the style of hzwong

font.

Cycle GAN ResNet + U-net Version Result

While the generator of the ResNet version can produce more similar images to the

ground truth, and the U-net can also produce similar results. However, the ResNet

version generator has one problem. Some features of the input image may disappear

while passing through the encoder. Therefore, we want to combine those two types

of methodologies to create a new generator. The idea is simple; we based on the

ResNet version generator and added the skip connection between encoder and

decoder so the feature of the input image will not lose during the encoder part of

the generator. As we think that the skip connection can help to do some of the

transformation processes and improve the generated image result.

89

(The left side is the handwritten input image; the right side is the generated image)

We can observe a significant result that is the Chinese characters 「農」. We can

see every stroke clearly, and the style changed comparing to other architecture

above. Moreover, we can also observe that the dot of 「絲」is much brighter than

the other two.

90

Cycle GAN DenseNet Version Result

Lastly, we implement the three blocks of the DenseNet version of the generator to

test the result.

(The left side is the handwritten input image; the right side is the generated image)

91

The result shows that it is not much different compare to the ResNet version. We

think that maybe our DenseNet layer is not enough to train through the

characteristics of the font. Therefore, we add more DenseNet blocks to the

generator to train. However, because of the dense shortcut connection. The channel

of the layer becomes larger and larger; it needs to read the memory more frequently.

Causing the cuDNN always crashes due to memory reason, so we cannot see the

result.

Non-Chinese character Result

As Cycle GAN is mainly learning the style between 2 font but it does not learn

what is the word exactly. Therefore, we try to input some non-Chinese character

into the trained network to show that the style is also working on other language

even though the network never seen those shape of the character.

(The left side is Korean character, the right side is Japanese character)

Using 5 Resnet version generator result:

92

Using ResNet and U-net version result:

We can observe that those non-Chinese characters can generate the image with the

hzwong font style. It shows that our network is general enough to learn the font and

apply it to other language’s characters.

93

5. Difficulties and Solution

The transparency layer of the image

All the images we collected have four channels – RGBA, when we input those four

layers as input and train for a long period of the epoch, but the GAN still cannot

find the pattern of those images. It keeps change the background color for a long

epoch until around epoch 3000. We can finally observe some shape of the emoji. It

is wasting time and resources to train.

Epoch 30 Epoch 465 Epoch 960

 Epoch 2055 Epoch 2550 Epoch 3235

94

As a result, we decide to remove the transparency layer for training. Although the

results may not as beautiful as the image contain transparency, the training time is

much faster.

Either generator or discriminator is too good

GAN has two separate training networks; we need to handle those two networks

not to defeat the other one entirely.

If the generator is too good, the discriminator needs to guess the result randomly.

It makes the feedback meaningless, causing the training becomes random, making

the quality of the image becomes worse over time.

If the discriminator is too good, the loss value provides to the generator become

nearer and nearer to 0, making the generator stop training as the gradient is 0.

95

The generator has no progress after a long period, and the loss value of both

generator and discriminator does not change.

Therefore, we need to balance the training speed of 2 networks by modifying the

learning rate, add more noise in one of the networks, etc. Also, Wasserstein loss is

designed to prevent discriminator is too good as the maximum output value of the

discriminator is not 1. It can be infinity, so it can still provide some information to

the generator for training.

96

Lack of Data

Because of the lack of data, we were investigating the amount of data required to

train a promising network. We tried to use different amounts of data from Fashion

MNIST to train a GAN in 100 epochs. With training data size 10000, we start to

retrieve a more realistic photo. However, it is worth noting that the images are only

28 x 28 dimensions and in grayscale. It means that if the dimension goes up, more

training data than 10000 may be needed. Below are the results.

Training Size 2000

97

Training Size 5000

Training Size 10000

98

Training Size 20000

99

Future Work

In this section, we provided some of the possible research that can be done.

Learning the overall structure of Chinese character and font style

without supervised learning

Pix2Pix network can learn both the font and the position of the Chinese character

stroke, but it needs both input and ground truth to be similar, and the dataset needs

to be precise and rigid to produce a quality image. Cycle GAN can learn the font

style and apply it to the input image, but it is unsupervised learning. Therefore,

Cycle GAN can just learn the characters of the font, but it cannot learn the structure

of the Chinese character. We hope that is a new method of network layer or model

and learn both font and the label about Chinese characters without supervised

learning.

Learn multiple font styles in one network

In our case of CycleGAN and Pix2pix, we can just build the one-to-one pair font

style changing. If we want to change it into other fonts, we need to train a new

model to fit the condition. We can try to use the category embedding method to

create an embedding space to fit many styles into the embedding space.

Solve real-life problem

As mentioned in the introduction, past calligraphers have their work related to

ancient Chinese characters. We can utilize GAN to extract their style and generate

their style in Chinese characters that is more common in the modern world. Besides,

ancient Chinese used Traditional Chinese. We can even translate to style to see

100

what it looks in Simplified Chinese. Furthermore, there are Asian countries that

have a history of calligraphy too, such as Japan and Korea. It will be interesting for

us to use these countries' calligraphy style and generate in Chinese characters or

vice versa.

101

Division of labor

This project is divided into two main parts, one is related to the emoji generation,

and the other part is focusing on the Chinese character font style changes. In this

FYP course, we did the emoji generation in the first semester and did the Chinese

character font style changing in the second semester. The following table

summarizes the labor of each of us:

Semester CHOI Ki Fung Tsang Ka Hung

1st Semester

Emoji Generation

 Modify and test GAN,

DCGAN

 Data gather and

preprocessing

 Label the emoji

 Create and process one-hot

encoding of emoji label

 Create concept illustration

graph

 Proofread and formatting

 Build and test the GAN and

DCGAN, CGAN

 Test different loss function

 Analyze the generated

emoji by eye observation

and loss comparison

 Create the network

structure graphs

2nd Semester

Font Style

Changing

 Build and test Pix2Pix

 Web scraping

 Data gather and

preprocessing

 Font preprocessing

 Preprocessing Pix2Pix

model input preprocessing

 Modify and test Pix2Pix

102

 Create self-written

handwritten images

 Proofread and formatting

 Build and test different

version of Cycle GAN

(ResNet, ResNet + U-net,

DenseNet)

 Create self-written

handwritten images

 Create the network

structure graph

The contribution of the report is summarized as follows:

Title Choi Ki Fung Tsang Ka Hung

Introduction 3 pages

Background 7 pages

Data Gathering 3 pages 3 pages

Data Preprocess 5 pages 4 pages

Generative Adversarial Network

(GAN)

 7 pages

Conditional Generative Adversarial

Network (CGAN)

6 pages 17 pages

Pix2Pix 3 pages 8 pages

Cycle-Consistent Generative

Adversarial Network (Cycle GAN)

2 pages 21 pages

103

Difficulties and Solution 3 pages 3 pages

Future Work 2 pages 1 page

Total Page Count 34 pages 64 pages

Contribution Detail

My contribution to this project is mainly data gathering and preprocessing.

Data gathering is the process of obtaining raw data from the Internet or the real

world. For the first term, I have to search for any existing datasets that are useful

for us, which is the ideal situation. Then, if those datasets do not exist, I need to

gather those sparse data from the Internet. There are tons of resources on the Web;

I need to screen out those unqualified data, such as images with watermark,

inconsistent images, licensed images, and so on. Then, after filtering out a useful

dataset, I have to scrape the data in an automated process while categorizing them.

Regarding manual work, I labeled the description of the emojis for the CGAN and

written Chinese characters for the second semester.

Data preprocessing can be divided into Data Cleansing and Data Wrangling. Data

cleansing is to eliminate incomplete, inaccurate, incorrect, and irrelevant data. For

example, there are duplicated emoji and emoji with modifiers (skin tone modifiers

and sexuality modifiers); there are calligraphy images that are only part of a typical

Chinese character. On the other hand, Data wrangling is the process of mapping the

raw data to another state that is qualified to use. For instance, coupling emoji and

its description to the one-hot encoding format and resizing images into a consistent

dimension and format. I also leveraged scripting to do the batch processing work.

104

Besides, I also helped in model design and training. In the first semester, my partner

stuck in getting a good result in his DCGAN because of mode collapsing. I designed

another architecture of DCGAN and yielded a better result. In the training process,

I also trained the networks with different hyperparameters to crosscheck which

networks’ architecture is producing a more promising result.

105

Reference

Anoff. (2017, October 22). anoff/deep-emoji-gan. Retrieved from

https://github.com/anoff/deep-emoji-gan.

Arjovsky, Martin, Soumith, & Léon. (2017, December 6). Wasserstein GAN.

Retrieved from https://arxiv.org/abs/1701.07875.

Dabbas, E. (2019, October 22). Full Emoji Database.

Iamcal. (2019, August 8). iamcal/emoji-data. Retrieved from

https://github.com/iamcal/emoji-data.

Eriklindernoren. (2019, August 31). eriklindernoren/Keras-GAN. Retrieved from

https://github.com/eriklindernoren/Keras-GAN.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., … Bengio, Y. (2014). Generative Adversarial Networks. Retrieved

from https://arxiv.org/abs/1406

.2661

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). doi: 10.1109/cvpr.2016.90

Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural

Networks. Science, 313(5786), 504–507. doi: 10.1126/science.1127647

Radford, A., Metz, L., & Chintala S. (2016). Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks.

Retrieved from https://arxiv.org/abs/1511.06434

https://arxiv.org/abs/1511.06434

106

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks

for Biomedical Image Segmentation. Lecture Notes in Computer Science

Medical Image Computing and Computer-Assisted Intervention – MICCAI

2015, 234–241. doi: 10.1007/978-3-319-24574-4_28

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets.

Retrieved from https://arxiv.org/abs/1411.1784

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation

with Conditional Adversarial Networks. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). doi:

10.1109/cvpr.2017.632

Quito, A. (2019, October 18). Why we can’t stop using the “face with tears of

joy” emoji. Quartz. Retrieved from https://qz.com/1726756/the-

psychology-behind-the-most

-popular-emoji/

 Unicode. (2019). Emoji Counts, v12.0 [Chart]. Retrieved from Unicode website:

https://www.unicode.org/emoji/charts-12.0/emoji-counts.html

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image

Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE

International Conference on Computer Vision (ICCV). doi:

10.1109/iccv.2017.244

Zhang, Ren, Sun, & Jian. (2015). Deep Residual Learning for Image Recognition.

Retrieved from https://arxiv.org/abs/1512.03385

107

Huang, Gao, Liu, Maaten, van der, Laurens, Weinberger, & Kilian. (2018).

Densely Connected Convolutional Networks. Retrieved from

https://arxiv.org/abs/1608.06993

	1. Introduction
	1.1. Motivation
	1.1.1. Emoji
	1.1.2. Chinese Calligraphy
	1.2. Background
	1.2.1. Generative Adversarial Network (GAN)
	1.2.2. Conditional GAN (CGAN)
	1.2.3. Image-to-Image Translation with Conditional Adversarial Nets (Pix2Pix)
	1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN)
	1.2.5. Previous work

	2. Data Gathering
	2.1. Emoji
	Unicode
	Images
	Description

	2.2. Chinese Calligraphy
	3. Data Preprocessing
	3.1. Emoji
	Preprocessing the images of emojis
	3.1.1. CGAN Data Preprocessing
	Labels

	3.2. Chinese Calligraphy
	Example of the inconsistent dimension of raw collected images
	Example of the preprocessed images
	4. Neural Network Architecture Design
	4.1. Overview of Generative Adversarial Network (GAN)
	Overview of Generator
	Generator Detail
	Overview of Discriminator

	GAN Result
	4.2. Overview of Conditional Generative Adversarial Network (CGAN)
	Overview of Generator
	Generator Detail
	Overview of Discriminator
	Discriminator Detail

	CGAN Result and Improvement
	14 conditions CGAN
	58 conditions CGAN

	4.3. Overview of Pix2Pix
	Pix2Pix: Generator
	Pix2Pix: Discriminator

	Pix2Pix Methodology
	Encoder-decoder network
	U-net
	PatchGAN
	Loss function
	Adversarial loss (MiniMax Loss)

	Problem of Pix2Pix

	4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN)
	Model design
	Cycle GAN: Generator (5 ResNet version)
	Cycle GAN: Discriminator

	Cycle GAN Methodology
	Residual block (ResNet)
	DenseNet
	Loss function
	Cycle Consistency Loss

	Cycle GAN Encoder + Decoder Only Version Result
	Cycle GAN U-net Version Result
	Cycle GAN Resnet Version Result
	Cycle GAN ResNet + U-net Version Result
	Cycle GAN DenseNet Version Result
	Non-Chinese character Result

	5. Difficulties and Solution
	The transparency layer of the image
	Either generator or discriminator is too good
	Lack of Data

	Future Work
	Learning the overall structure of Chinese character and font style without supervised learning
	Learn multiple font styles in one network
	Solve real-life problem

	Division of labor
	Contribution Detail

	Reference

