The Chinese University of Hong Kong
CSCI4999 - MHW1903

Final Year Project 11

Term 2 Report

Supervisor: Prof. WONG Man Hon

Students: CHOI Ki Fung _
TSANG KaHung |
Prepared by: CHOI Ki Fung _

Table of Content

L. INErOAUCTION . .c..eiiiiieiieiet ettt st 6
Ll MOIVATION .ttt sttt ettt s 6
O O % 410§ SO U PSPPSR 6
1.1.2. Chinese Calligraphycccccueeeiiiiiiiiieeieeeee e 7
1.2, Backgroundccceeoiiiiiiiiieiie et 9
1.2.1. Generative Adversarial Network (GAN).......ccccoveevieeeiieeeieeceeeeen 9
1.2.2. Conditional GAN (CGAN).....ocooiiieiieeie e 10
1.2.3. Image-to-Image Translation with Conditional Adversarial Nets
(PIX2PIX) cotieeeiie ettt ettt ettt e e b e e e aaeeeaaeeebaeeeeteeeenns 11
1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN)...................... 13
1.2.5. Previous WOTKcooiiiiiiiiieeeeee e 15

2. Data GatheriNgceeeeiuiieeiieeciie ettt e e eeae e e ar e e esbeeesaseeesnsee s 16

B2 B 2 ' T) F PSSR 16
UNICOAR ..ttt ettt et b et st sbe et st e b eaees 16
IINAZES . ettt sttt sabee e 16
LD T3 4 01510) WSS SRRUPSPR 17

2.2, Chinese Calligraphy......c..ccociiieiiiiiiiiieiie e e 18

3. Data PreproCESSING......ccciuieeiieeeiiiieeiieeeiteeeeieeesteeesteeessseeesseeessseessseessseeens 21

K 28 DR 21 Vo) | B OO P TURUU PRSPPI 21

Preprocessing the images Of @MOJiS.......c...occvueeeeeeeeceeeeciieeeieeeeiee e eaee e 21

3.1.1. CGAN Data PreproCesSINg......ccccuveeruieerireeniieesireeneeeesiveeesereesseeesneeens 22
LaBCIS ..t et 22
3.2, Chinese Calligraphy........ccccceevieriiiiieiiieiie ettt 24
Example of the inconsistent dimension of raw collected images........................... 26
Example of the preprocessed imagesccoueeeueeeceeeeeiieeeiieeeieeeeiee e 27
4. Neural Network Architecture Designccccveveviieeiiieeeieeeiee e 29
4.1. Overview of Generative Adversarial Network (GAN)......cccccecvvevcvveennnenn. 29
OVEIVIEW Of GENETALOT ..ottt 29
Generator DEtail.........oceiiiriiiiiiiiieee e 30
Overview of DISCIIMINALOTceeuiiiiiiiieiiieeieeee e 31
Discriminator Detail.........c.ooiiiiiiiiiiiii e 31
GAN RESUIL....eeieeieeeeee ettt ettt ae et eaae e eseeneens 34
4.2. Overview of Conditional Generative Adversarial Network (CGAN) 37
OVEIVIEW Of GENETALOToutieiiiiiiiiieie ettt 38
Generator DEtail.........oceoiiviiiiiiiiieee e 39
Overview of DISCIIMINALOTceouiiiiiiiiieiieeieete e 40
Discriminator Detail.........c.ooiiiiiiiiiii e 41
CGAN Result and IMProvement............eecuveeeciieeeiieeniieesieeeeeeeeeeeeeeeeeveeeeveeees 42
14 conditions CGAN.....cocuiiiiriieieeee et 43

58 CONAIIONS CGAN . ..ot e e e e e e e e e e reaaeeaeeanes 54

4.3, OVerview Of PIX2PIX . .ooiiiiiiiiieeiee e 60
Pix2PiX: GENETALOT ... ettt sttt 61
Pix2Pix: DISCIIMINALOT.......couiiiiriiiriiiieiiesieeieetese ettt 62

Pix2Pix MethOdOLOZYcccuvieiiiiiieiieie ettt 63
Encoder-decoder NnetWorkcoouiiiiiiiiiiii e 63
UADICE ettt ettt ettt e e s e e 64
PatChGAN ...ttt ettt ettt 65
L0SS TUNCHION. ...ttt st 66

Adversarial 10ss (MIiniMax LOSS)cccouveeeuiiiiiiiieiiieeeiee e 66
Problem of PiX2PIX ...cooueiiiiiiieieeee e 69

4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN).......... 71

MOAE] AESIZN.....ueiieiiieeiiiecie ettt et e e e et e e e e e e e e ereeesnreee e 72
Cycle GAN: Generator (5 ResNet VErSion)cceevveeieeneerieeniieeieenieeeneans 72
Cycle GAN: DiSCIIMINALOTc..eevuieeiieiieeieeniieeteesieeeieenieeereesseesveeseesaneens 75

Cycle GAN MethodolOgYcooviiiiiiiieiiieiieeie et 77
Residual block (RESNEL)vvieeiiieciiieciie ettt 77
DENSENET ...ttt 78
0SS fUNCHION. ..ottt 78

Cycle ConSiStENCY LOSSeevuiieiieiiieiieiie ettt ettt ens 80

Cycle GAN Encoder + Decoder Only Version Resultccccccvveviveennnennnne. 81

Cycle GAN U-net Version Result..........ccccueeriiiiiriieeiiiieiie e 83
Cycle GAN Resnet Version Result..........coccoevieiiiiiiiniiiiiienieceeeeeeeeen 85
Cycle GAN ResNet + U-net Version Result...........ccceeevievieniiiiiieniiieieieee, 88
Cycle GAN DenseNet Version Result..........ccceviiiiieniiieiieniiicieieeeeeeee, 90
Non-Chinese character Result...........ccccoiiiiiiiiiiiiiiiieeeee 91
5. Difficulties and SOIULIONooiuiiiiiiiiiiiiee e 93
The transparency layer of the Image..........cceccvveeeiieeiiiicciie e 93
Either generator or discriminator is t00 Z00dccervuerieriieienieninieneeieenne. 94
Lack 0f Data........ooiiiiiiiiieeeeeeee s 96
FUture WOtkoooei e e 99

Learning the overall structure of Chinese character and font style without

SUPETVISEA L@ATNING ..evvvieeiiieeiiieeiie ettt e e e e e e e b e e enreeeenes 99
Learn multiple font styles in one networkccccceeeevieeiiiieciiieecieeceeeeieeee 99
Solve real-life problemcccoocvieiiiiiiieiieie e 99
DiviSion Of [aDOTcouviiiiiiieiiiieieeeee e e 101
RETETEICE ...t e 105

1.

1.1.

1.1.1.

Introduction

Motivation

This project is to explore the different possibilities of Generative Adversarial
Network. Initially, we aimed to generate new emojis for daily communication.
However, the number of data we can collect for emoji is very limited. Then, we
switched our focus on Chinese Calligraphy, which has far more data and various
styles. Below, we will explain the motivations why we choose these two domains

of problem.

Emoji

With the rise of smartphones in the last decade, emojis were added to several
operating systems. People use instant messaging apps, like WhatsApp and
Telegram, more frequently than SMS and call. According to Quito (2019),
“Numerous studies suggest that 55% of human communication is through body
language—gestures, posture, facial expression—and 38% is conveyed by a
speaker’s tone and inflection.” However, it is limited in digital messaging. Thus,
emojis were used as ideograms to encode the sender’s emotional and social cues,

hoping that the recipient understands what he/ she is trying to convey.

The total number of emojis is 3,019 as of September 2019 (Unicode, 2019), but
some emojis use the same appearance or different skin tones. The Unicode adds
about a hundred of new emojis each year. With the development of neural networks,

we wish to use GAN to generate synthetic emojis for people to use.

1.1.2. Chinese Calligraphy

On top of modern emoji, another thing we desire to explore is Chinese Calligraphy.
It is one of the crucial elements of Chinese art and one of the Four Arts of The
Chinese Scholar. Besides, the history of Chinese Calligraphy can be traced back to
the Oracle bond script, the first form of Chinese characters, in 1300 B.C. Then,
Chinses Calligraphy derived into different stream and style, for example, Clerical,

Cursive, Semi-cursive, Regular script G#3 ~ %3 ~ 73 ~ 7 3).

However, in the modern world, people have been using computers and mobile
phones. We seldom write on paper, let alone calligraphy. Fewer and fewer people

know how to calligraph, and fewer and fewer calligrapher.

Moreover, some of the greatest Chinese calligrapher’s artworks have passed
through centuries down to this day. However, there is only a limited number and

character. What if Wang Xizhi(2 & 2_) can write a Fai Chun for me? Or Su Shi(#
#)?

Locally, we have seen Chinese Calligraphy every day from the street sign and
minibus sign. Sadly, some of the authors of these signs are passed away, and this
kind of art is diminishing. For example, Uncle Lee' who was a street calligrapher

with his work at every corner, Tsang Tsou Choi?, a.k.a King of Kowloon, famous

! https://www.facebook.com/pg/leehonhk
2 https://en.wikipedia.org/wiki/Tsang_Tsou_Choi

for his calligraphy graffiti, and Mr. Mak?, the last minibus sign designer in Hong

Kong.

e 3

A B %
P ek

P2 i FAAE R #
RE HaH TS

Replicated work of Uncle Lee

MoNZs
*
&

The last minibus sign designer

Therefore, we wish to use GAN to capture the style of these calligraphers and

regenerate them with different possibilities.

3

https://www.eldage.com/pages/%E6%89%8B%ES5%AF%AB%ES5%B0%8F%ES5%B7%B4%E7%
89%8C%ES5%B7%A5%E4%BD%9C%ES5%9ID%8A

8

1.2. Background

1.2.1. Generative Adversarial Network (GAN)

GAN is a deep neural network proposed by Goodfellow, et al. in 2014. GAN
comprises two neural networks, a generator, and a discriminator. The generator
takes a random number from the latent space, where features lie, to generate a
sample. It could be an image, audio, text, etc. The generated samples are then mixed
with the real samples to form batches of training data and feed into the discriminator.
For each of the input samples, the discriminator has to classify that it is a real-world
sample or a sample generated by the generator. Then, a loss function uses the result
to calculate the loss and update the models. If the discriminator successfully
identifies a sample, it will be rewarded for recognizing the generator’s flaws.
Similarly, if the generator successfully fakes a sample without being caught, it will

be rewarded for generating more samples like that one.

Real
Samples

latent space

(|
Discriminator Real/Fake?
Generated
(Gene@— Sample Result

Update Loss Function

Hllustration of GAN

1.2.2. Conditional GAN (CGAN)

Though GAN produces a plausible and similar result inferring from a given dataset,
we may want a concise outcome in real life instead of a random, uncontrollable one.
Conditional Generative Adversarial Nets, CGAN, is an extension of GAN with the
ability to generate sample on a class label (Mirza & Osindero, 2014). CGAN is
merely adding the labels as an additional layer, but the modification has to be
carried out on both generator and discriminator for balance. The generator takes a
random number from latent space z given a label y and outputs a synthetic sample.
The discriminator takes a sample x, which can be from the generator or real-world,

given the label y and predict the authenticity of x.

‘/Discriminator D(xly) {.} \

|
00000

eeeee (od00
\

\

(o @ @O @@

~

N . y
\OOOOOCXXXX{/

Hustration of CGAN. (Mirza & Osindero, 2014)

10

1.2.3. Image-to-Image Translation with Conditional Adversarial Nets
(Pix2Pix)
Pix2Pix is an astonishing network that solves the image-to-image translation
problem (Isola, Zhu, Zhou, & Efros, 2017). After the network is trained, it
developed a generic loss function that is dedicated to a specific domain of image
mapping, such as mapping a satellite image to a map. When switching to another
domain, the only thing to do is just training on a different set of data, and the

architecture of the network does not need to be changed.

Labels to Street Scene

Labels to Facade BW to Color

output

Aerial to Map
input out input output
Day to Night - Edges to Photo
7\
/if 'L

oy

SRS

el

\H || 1/

\L If

_ ——
output input output input output

Example usage of image-to-image translation problems. (Isola, Zhu, Zhou, & Efros, 2017)

Pix2Pix is derived from CGAN, where, in this time, the synthetic image is based
on the input image. In the training phase, the network generator is fed with the
source image. In this time, the discriminator is not only provided the generated
image. Both the source and the generated images are given to increase the power
of the discriminator. The generator and decimator battled again each other, in an

adversarial manner.

11

Although Pix2Pix based on CGAN, Pix2Pix tweak the internal component of the

network to make it more robust and giving more promising result.

12

1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN)

In Pix2Pix, image-to-image translation is trained using a set of paired training
images, e.g., a set of photography(input) and a set of corresponding desired
painting(output). However, most of the time, our training data is unpaired; for
example, the paintings do not depict the same scene in the photographs. One of the
reasons is that it is merely expensive to prepare the paired dataset, e.g., hiring
someone to do the painting. Another reason is that the data is in the past, e.g., a

painting by Van Gogh.

Cycle GAN is an unsupervised learning network to solve this unpaired image-to-
image translation (Zhu, Park, Isola, & Efros, 2017). Cycle GAN is able to extract
general characteristics from two sets of unrelated images and exploit that in the
image translation process. Traditional GAN has a problem called mode collapse,
which is the generator found out an especially plausible output that can fool the
discriminator and generate only that output. The variety of output of the GAN is
lost in mode collapse. There is a possibility that the generator generates an output
that has no correlation with the input while fooling the discriminator. To alleviate

this problem, Cycle GAN uses a technique called cycle consistency.

13

R
“~_

The basic structure of Cycle GAN. (Zhu, et al., 2017)

The idea is to implement two GANs (G & F). The newly introduced GAN F'is to
translate the output image back to the input image. Because if we can revert to the
input image, it proves that the G is not generating an arbitrary image but actually

doing the translation.

14

1.2.5. Previous work

We found user ‘anoff’ on GitHub has developed a deep emoji generative

adversarial network about generating new emoji®.

This project provides some different network designs and hyperparameters to try to

generate new emojis with DCGAN. Here is his final sample:

Final sample

We found that this project’s final sample looks like the same. Most of them contain
dot eyes and a smile/poker face. Moreover, some of the quality is bad. We want to
improve this project by designing a new GAN network. Also, trying to provide
some condition on the emoji so we can somehow control what we expect the emoji

look like.

4 https://github.com/anoff/deep-emoji-gan
15

2. Data Gathering

2.1.

A well begun is half done. The quality and quantity of data are undoubtedly the
factors of yielding a good result. Therefore, here we identify the critical data that

needs to be collected here and the reason why.

Emoji
Before collecting any data, we identified three types of data are needed. First is the
Unicode that defines an emoji. Second is the raw images of emojis, which have to

in a consistent dimension. The third is the description of an emoji, which is essential

to construct a CGAN.

Unicode

The Unicode is the unique value to identify an emoji, e.g., 0 = 1F600. We
discovered that Dabbas(2019) has already maintained an up-to-date emoji database
in CSV format with 3827 entries in Kaggle® which is an online website to find and
publish data sets. Each emoji is paired with a Unicode value and groups. The
Unicode value can be used to extract the corresponding emoji image in another

repository.

Images

Though the Unicode Standard is the unified consortium to design or approve the

new emoji, the Unicode characters are more about the “identity” rather than the

5 https://www .kaggle.com/eliasdabbas/emoji-data-descriptions-codepoints

16

appearance, in consequence, there are different sets of emoji from each company,

just like different fonts for English characters.

q" =" .AA

_— .

Downcast face emojis from Apple, Facebook, Google, Messenger, and Twitter.

A GitHub repository® has collected groups of emoji photos and provided a way to
parse emoji data and images easily. It contains a JSON file about the meta-data of
the emojis, like the image file name of the emoji, and whether a company has

published an emoji.

Description

The description of an emoji is useful for building up the neural network. However,
there is no secondhand data which was made by other people before. We have to
input the description of an emoji one by one. Using the database from Kaggle, we

add a new column about the characteristic of the emojis.

emoji name codepoints labels
. 1F600 face, grinning, smiling, joy, teeth, pleasure, cheer, open
grinning face eyes, open mouth
grinning face with big face, grinning, smiling, joy, teeth, big eyes, oval eyes,
1F603
eyes open mouth
grinning face with face, grinning, smiling, joy, laughing, smiling eyes,
" 1F604 o
smiling eyes squinting eyes, open mouth, teeth
beaming face with face, beaming, smiling, joy, laughing, smiling eyes,
&) L 1F601 e
smiling eyes Cheese, teeth, warm, gratified, proud, amused
Labeled Excel Data

¢ https://github.com/iamcal/emoji-data
17

https://github.com/iamcal/emoji-data

2.2. Chinese Calligraphy

There are three parts for the data about the Unicode, font, and handwritten word.

Unicode

The Unicode is the unique value to identify different Chinese characters, e.g., - =

\u4e00. We discovered that most of the traditional Chinese characters are in the
range of \u4e00 to \u9fdS, which contains about 20949 of traditional Chinese

characters. We make a JSON file to store all those Unicode for further usage.

Font

In a modern computer operating system, there are many build-in fonts on the OS.
For Windows 10, there are two font styles which are related to traditional Chinese

characters which are MingLiU(#7 %o P 42) and DFKai-SB(1% 15 42). We can

directly get their TrueType file(.ttf), which is the standard format for fonts on the

OS. Also, we collect some more font on the internet’, which is % é« 23238

(we name it hzwong).

By collecting fonts, we can convert the font characters into images. This
significantly reduces the effort required to prepare a paired dataset for training the
network. The details of the operation will be elaborated in the Methodology section

below.

" http://www.diyiziti.com/

18

Handwritten word

There are two types of handwritten words. First one is scraped from ' ff 2 & %
& ; %, Unfortunately, unlike emoji, there is currently no related database or
repository that archives Chinese calligraphy. ' f#t & i= 5 & | is a personal

website of a calligrapher, Mr. Chen Chung Chien, which stores over 210,000 of his
own handwritten Chinese calligraphy images with various style. We use a python
package called Beautiful Soup to pull the data from the website. First, we go to the
album page of the website and extract all the images page by page. In Figure 1, the

source of the image and the text label are encapsulated in the tags.

8" cellpadding="10" bor

Example of the image and the corresponding DOM element

However, as our program hit the server too frequently, the webserver crashed and
banned Hong Kong IP addresses for a period of time. At this point, we scraped
about 14,000 images. We deem that it is enough for training the model referring to

the last experiment we did in the last term.

The second type of data is the handwritten Chinese characters written by us. We

pick around 1000 commonly used Chinese characters from CUHK HUMANUM”’

8 http://163.20.160.14/
% https://humanum.arts.cuhk.edu.hk/Lexis/lexi-can/faq.php

19

for our project and write those Chinese characters on Windows Paint and paper

with size 256x256.

mllllllﬂlllmllﬂw
7 i /&3 2 A [VA i 77 U I N T) VA O
Vi V2 2 B2 72 ' ' R VA V7 ¥R YA Y W 1) I

nomAnARRnnERAAGEER

Handwritten word on paper with size 256x256

20

3. Data Preprocessing

The data we collected from the web or prepared by us need to be adjusted for
consistency before training. For instance, the dimension, format, and position of the

images.

3.1. Emoji

The images extracted from the GitHub repository we mentioned earlier are filtered
by the Unicode we specified and turned into a NumPy array. Since the images were
encoded in PNG format, the transparency channel should be removed, i.e., turning
the transparent pixel to a white background. Then, scale down the image pixel value
from 0 ~ 255 to -1 ~ 1, which is generally a common trick to normalize an image

in building a neural network.

I o |126[44| 0

. . 117222 81 | 117|216
Convert to numpy array——=%

A 11109 158|138 33

L{ 0 [254|163| O

4 channels (64, 64, 4)

Remove alpha channel

=
H 0.0 |0.46|0.14| 0.0
H 0.87|0.32|0.46 | 0.85 Seale ol] 216
«—Stack all emojis lJu.43 0.62|0.54/0.13 celefoatange ol 0 109|158 | 138| 33
0.0 | 1.0 [0.64] 0.0 o0 |254]163] 0

(391, 64, 64, 3) (64, 64, 3) 64, 64,3)

Preprocessing the images of emojis

21

3.1.1. CGAN Data Preprocessing

Labels

The images of the emojis and the labels have to be fed into the neural network, but

the network cannot directly take as inputs. We used Pandas'’, a data manipulation

and analysis tool, to preprocess the data. We turned the description into One-Hot

Encode data using Pandas, resulting in a 91 rows x 420 columns table.

First, we use Pandas to read our CSV file and save it to a dataframe(df). We select

the first 91 emojis, which are face emojis only.

In [1]:

In [2]:

In [4]:

import pandas as pd
import numpy as np

from sklearn.preprocessing import MultiLabelBinarizer
df = pd.read csv("emoji_df excel.csav")
df = df[:91]
df.head ()
emoji | name group sub_group | codepoints | labels
Smileys & face, grinning. smiling, joy, teeth,
0|@ |grinning face 3 face-smiling | 1F600 9 9 9. Joy.
Emotion pleasure,...
Smileys & face, grinning. smiling, joy, teeth, bi
1| @ |grinning face with big eyes . face-smiling | 1FE03 g g 9. Joy g
Emotion eyes,...
rinning face with smilin Smileys & face, grinning, smiling, joy, laughing,
2@ 9 9 2 d face-smiling | 1F604 !) A
eyes Emotion smilin. ..
beaming face with smilin Smileys & face, beaming, smiling, joy, laughing,
3 9 : : face-smiling | 1F601 . ! Al S
eyes Emotion smiling...
o - Smileys & 2 face, grinning. squinting, joy, laughing,
4 rinning squinting face face-smiling | 1FE06
e g 954 g Emotion g broa...

Then, we transform the “labels” column, which describes the emoji by words into

one-hot encoding.

10 https://pandas.pydata.org/

22

In [5]: |one_hot = df.labels.str.split('\s*,\s*', expand=True) \
.stack() \
.str.get_dummies () \
.sum(level=0)
one_hot.head ()

Cut[5 X-shaped

$|><|Cheese | ROFL - XD |abashed | admiration | adoration | adventure | ... | winking | woozy | worried | wow | ya
0(0|0 |0 0 0 0 |0 0 0 0 -0 0 0 0 0
1(0|0 |0 0 0 0 |0 0 0 0 -0 0 0 0 0
2(0|0 |0 0 0 0 |0 0 0 0 -0 0 0 0 0
(0|0 |1 0 0 0 |0 0 0 0 -0 0 0 0 0
4(0(1 |0 0 1 1 |0 0 0 0 |0 0 0 0 0
& rows = 419 columns
£ >

Next, we drop the original “labels” column and concatenate our newly created one-
hot labels to the dataframe. Finally, we drop the “name,” “group,” “sub_group,”

and “codepoints” columns, which are unnecessary for training the neural network.

In [7]: |df.iloc[:5, np.r_[0. S5:len(df.columns)]]
Cutl7 s X-shaped o] sd - :
emoji|$|><|Cheese | ROFL Spee XD | abashed | admiration | adoration | ... | winking | woozy | worried | wow | yawnin
0 @ 0|0 |0 0 0 0 |0 0 0 0 0 0 0 0
1@ 0|0 |0 0 0 0 |0 0 0 0 0 0 0 0
2 @ 0|0 |0 0 0 0 |0 0 0 0 0 0 0 0
3 ojo |1 0 0 0 |0 0 0 0 0 0 0 0
4| @ 0|1 |0 0 1 1 |0 0 0 0 0 0 0 0
S rows = 420 columns
£ >

Final and neat labels of the emojis

23

3.2. Chinese Calligraphy

Two preprocessing tasks have to be carried out for the font from .ttf file and the

image collected on the Internet.

For the font collected from the .ttf file. We need to make Chinese characters become
images and feed into the neural network. We use the pillow(PIL) library!! | which
is a Python Image Processing Library to make a simple program to generate those
images. For each Unicode, we create a new image with a size 256x256 match with

different font. Store the image into separate folders categorize by the font family.

Code of generating Chinese Characters by font

After that, by manually checking all the generated images, some images are non-
Chinese characters or blank image because the font does not have a design for that

Unicode. We handpicked it up and deleted it.

"pillow(PIL) library https://pillow.readthedocs.io
24

1.5 jpg “.Jpg

1_%.jpg *.jpg 1_Z.jpg

1_%.jpg 1_ff.jpg 1_{4.jpg 1_ffljpg 1_{L.jpg

Non-Chinese Characters and Blanked Generated image

As aresult, MingLiU has 18554 images, DFKai-SB has 18542 images, and hzwong

has 6861 images.

IIIIIIIIII-

DFKai-SB font Chinese Characters

25

hzwong font Chinese Characters

For the image collected from the Internet. The images of calligraphy that we
collected come with different dimensions. The neural network normally has a fixed

size in the input layer, so we have to resize the image to a consistent resolution.

20

40

L pine— %

20 L‘ a0
0 50 100

Example of the inconsistent dimension of raw collected images

26

50 50
100 4 100 4
=
150 A 150 |
200 4 200 4
250 4 i i 250 4 T T
0 100 200 0 100 200

Example of the preprocessed images

Because of the large number of images, it is inefficient for us to resize each of them
one by one. We used an open-source software called ImageMagick'? to do batch
image processing. Since the raw images are not in the 1:1 aspect ratio, we have to
first scale up the images uniformly. Then, set the canvas size to 256x256 and shift
the images to the center. Finally, fill the unoccupied area with white color to act as

a background.

Before the image is loaded into the network. For all Chinese character images, we
do a process called random jitter, which means we enlarge the image from
256x256x3 to a larger scale. Then random crop the image back to 256x256x3 and
randomly flip the image horizontally. This process will improve model training and

make the model not easy to overfit.

12 https://imagemagick.org/

27

random jitter

Code of random jittering

After that, we do the same thing like emoji images to normalize the image from

image pixel value from 0 ~ 255 to -1 ~ 1.

28

4. Neural Network Architecture Design

4.1. Overview of Generative Adversarial Network (GAN)

noise
dimension

Y

Generative Adversarial Network

Generator — » Fake image

Overview of Generator

Y

100-dimensional

noise value 39768

dense layer

64x64x3

Real image ————» Discriminator —_—

Predicted
Result

fake image

Generator
Batch
Normalization
+ Leaky Relu
» »
Reshape # 8x6x512 Ly 16x16x128
ConvZDTranspose Conv2DTranspose
Batch
Normalization
+ Leaky Relu
Batch
Normalization
+ Leaky Relu
tanh <
GAx64x3 32x32x64
Conv2DTranspose Conv2DTranspose

29

Generator Detail

input: |(None, 100)
noise_dim: Input Layer

output: ((None, 100)

input: |(None, 100)
dense: Dense Layer

output: |(None, 32768)

input: |[(None, 32768)
reshape: Reshape Layer

output: |(None, 8, 8, 512)

input: |(None, 8, 8, 512)
conv2d transpose 1: Conv2DTranspose Layer

output: |(None, 16, 16, 128)

input: |(None, 16, 16, 128)
batch normalization: BatchNormalization Layer

output: (None, 16, 16, 128)

input: |(None, 16, 16, 128)
leaky re lu: LeakyReLu Layer

output: (None, 16, 16, 128)

input: |(None, 16, 16, 128)
conv2d transpose 1: Conv2DTranspose Layer

output: |(None, 32, 32, 64)

input: |(None, 32, 32, 64)
batch normalization 1: BatchNormalization Layer

output: |(None, 32, 32, 64)

input: |(None, 32, 32, 64)
leaky re lu 1: LeakyReLu Layer

output: |(None, 32, 32, 64)

input: |(None, 32, 32, 64)
conv2d transpose 2: Conv2DTranspose Layer

output: |(None, 64, 64, 3)

input: |(None, 64, 64, 3)
tanh activation: Activation Layer

output: |(None, 64, 64, 3)

30

Overview of Discriminator

64X64x%3 3

Discriminator

realifake image 3(_2:;%;%‘1 Leaky Relu 7 1?:)(01n6\i(21§8
+ Dropout
Batch
MNormalization +
Leaky Relu +
Dropout
Batch
Normalization + v
_ sigmoia | Flatten Le%kri;i'f *
- ™ 8X8x256 8x6x256
result Conv2D
between
0&1
Discriminator Detail
input: |(None, 64, 64, 3)
images: Input Layer
output: |(None, 64, 64, 3)
input: |(None, 64, 64, 3)
conv2d: Conv2D Layer
output: |(None, 32, 32, 64)
input: |[(None, 32, 32, 64)
leaky re lu 2: LeakyReLu Layer
output: |(None, 32, 32, 64)
input: [(None, 32, 32, 64)
dropout: Dropout Layer
output: |(None, 32, 32, 64)

31

input: |(None, 32, 32, 64)
conv2d 1: Conv2D Layer

output: |(None, 16, 16, 128)

input: |(None, 16, 16, 128)
batch normalization 2: BatchNormalization Layer

output: |(None, 16, 16, 128)

input: |(None, 16, 16, 128)
leaky re lu 3: LeakyReLu Layer

output: (None, 16, 16, 128)

input: |(None, 16, 16, 128)
dropout_1: Dropout Layer

output: (None, 16, 16, 128)

input: |(None, 16, 16, 128)
conv2d 2: Conv2D Layer

output: |(None, 8, 8, 256)

input: |(None, 8, 8, 256)
batch normalization 3: BatchNormalization Layer

output: |(None, 8, 8, 256)

input: |(None, 8, 8, 256)
leaky re lu 4: LeakyReLu Layer

output: |((None, 8, 8, 256)

input: |(None, 8, 8, 256)
dropout 2: Dropout Layer

output: |(None, 8, 8, 256)

input: |(None, 8, 8, 256)
flatten: Flatten Layer

output: (None, 16384)

input: |(None, 16384)
dense 1: Dense Layer (activation: sigmoid)

output: (None, 1)

32

Loss function:

We tried two different loss functions to try to build the network. They are Minimax
loss and Wasserstein loss.

Minimax Loss

E,[log(D(x)] + E,[log(1 — D(G(2))]

D(x) is the probability of the discriminator’s estimate the real image x is real
G(z) is the generator’s output when given noise z

D(G(z)) is the probability of the discriminator’s estimate the fake image x is real
Ex is the expected value of all the real images

Ez is the expected value of all the fake images

The generator aims to minimize this function while the discriminator aims to
maximize this function.

In the GAN that we build with minimax loss function, the activation of the output
layer in the discriminator is sigmoid, and the optimizer is Adam.

Wasserstein Loss

Wasserstein loss in discriminator is not output the range (0, 1) to classify the image
is real or not. It outputs a number only to try to make the number of real images is
much bigger than the number of fake images.

Discriminator loss: D(x) - D(G(z))

The discriminator tries to maximize the value of this function

Generator loss: D(G(z))

The generator tries to maximize the value of this function

We follow the suggestion in the paper of Wasserstein GAN (Arjovsky, Martin,
Soumith, & Léon. , 2017), the activation of the output layer in the discriminator is
linear, and the optimizer is RMSProp.

33

GAN Result

Using the GAN architecture similar to ‘anoff” one (https://github.com/anoff/deep-
emoji-gan):

Epoch 25305, using Wasserstein loss function (cwgan.py)

34

Using the GAN model mention above using minimax loss function

(DCGAN.ipynb):

Epoch 8900

Vet s

Epoch 9700

35

The above result of different loss functions shows that minimax loss function seems
to have a better result with less training epoch. Therefore, when we build our

conditional-GAN, we would like to use the minimax loss function in our model.

36

4.2. Overview of Conditional Generative Adversarial Network (CGAN)

We used the concept of DCGAN as our model base (Radford, Metz & Chintala,
2016). And followed the idea provided by Conditional Generative Adversarial Nets

(Mirza & Osindero, 2014)

Condional Generative Adversarial Network

label of ‘L
the image

Real mage —» Discriminator —_—

Predicted
Result

neise
dimension
—
—_— Genarator —— » Fake image

37

Overview of Generator

Generator
64
labels dense layer
Reshape &xaxd
Concatenate
8x8x513 I —
Concatenate 16x16x128
- Reshape 3 Conv2DTranspose
7 7 848x512
Batch
100-dimensional 32768 fOeri“ZalI?n
noise value dense layer eary held
Batch
Maormalization
+ Leaky Relu
B4%64x3 P tanh N
fake image B
B4x64x3 I2x32%64
Conv2DTranspose Conv2DTranzposs

38

Generator Detail

, , inpul; (Mone, 1O0) input; | (hMone, 57)
dim: Tnput L Ly labels: Tnput L
noies_dim: Tnpat Layer cutput:|(Nome. 100) abela: Inpat Layer output:| (None. 57)
L 4 4
inpat: (Mone, LOO) input: | (None, 57)
o : Dense L d : Denze L
SR LR LA cutput: | (Mone, 22705) FiEE F A aoutpul; | (Mone, 640
hame: Reshane L input: | (Mone, 32768) hape: Reshane L inpul: | (Mone, 64)
{estapE: Restiaps LaE output: |[(Mone, 8,8, 5123 FEshape:s Restiane Layel antput: | (Mone, 5,8, 1)

\ {

inpart:
CDHEN&H&[E_I: Concatenals Lavar E

\4

[(None, 8, 8, 512), (None, 8,8,17] |

oulpals

iMone, 2,2, 513)

¥

i 1 1 Fonu? DT . inpul: (None, 8, 8,512)
conv2d_tranapose_1: Conv2DTranspoae Layer ouput| (Noe. 16, 16, 128)
b 4
bateh loation: Faten il Vimation 1a mpul; ‘Nons, 16, 16, 1283
atch_normalization: BatchMorma 123;n yar ouiputs | (None, 16, 16, 128)
inpuf: rMone, 16, 16, 128)
leak Iu: L Eelu La
SBE¥ Jo_li; LakyFiolw 5’: output: | (None, 16, 16, 128)
A 1 1: ConvoDT L inpul; (Nons, 16, 16, 126
convZd_tranapoze_1: ConvZ2DTranspose Layer p—— (None, 32, 32. 64)
§
_— - input: (Mone, 32, 32, 64)
bal aliza 1: Batch lization L
alch_norm ton_ ormalization Laver p— (o, 32, 32, 64)
L
leak lo 1t LeakvRelu La impul: (Mone, 32, 32, 64)
FARYIEI_L LEARTRELE LAV auput: (Mome, 32, 32, 543
inpuf: (Mone, 16, 16, 1283
Lt 20 ConvzDT L
COnTZanapass_2: Cony Iansp:.:e A aulpuf: ‘None, B4, 64, 3)
ianh activation: Activation La inpul: iMons, 64, 64, 33
AT activien A LAver outpul: (Mone, 64, 64, 33

39

Overview of Discriminator

Discriminator

4095
labels dense layer

-

»
Reshape B4x64x1

v

I

32x32x64
ConvaD

Concatenate 64x64x4
Concatenate
G4x64:3
real/fake image
) Sigmoid Flatten
el B 8x8x256 «
result
between

0&1

40

Leaky Relu
+ Dropout
> 16x16x128
Conv2D
Batch
Normalizafion +
Leaky Relu +
Dropout
Batch v
Normalization +
Leaky Relu +
Dropout
Bx8x256
Conv2D

Discriminator Detail

input: (None, 57)
labeks: Input Layer

d y output: (Mone, 57)

dene: Denas L input: | Qlone, 57)

e o LA cutpui: | (Mone, 4096)

, |inEut: (Mone, 64, 64, 3) input: (Mone, #096)

: Input La; 1eshape: Feshape Laver

HHakes: il ave cutput: | (Mone, 64, 64, 3 g be Lave output: | (Mone, 64,64, 1)

L 4 L 4

input: | [(None, 64, 64, 3), (None, 64, 64, 1)]
tenate_1: C La
concalenate s oncatenate Laver cutpu: (None, 64, 64, 4)
4
. input: | (None, 54,64, 4)
convad: ConvzD Layes cutput: | (Mone, 32, 32, 64)

L 2

input: | (None, 32, 32, 64)
1 ha_2: LeakyReLu L nput: | (None, 32, 3,
saky_se_fu_c: LeakyRelu “’; cutput: |_(None, 32, 32, 64)
input: | (Mone, 32, 32, 64)
d :D L
ropout: Dropout Layer " output: |_(None, 32, 32, 64)
wd 1 Conv®D La input: | (Mone, 32, 32, 64)
OOFEL,_ i omya’) “ager cutput: | (Nene, 16, 16, 128)
L . input: | (Nene, 16, 16, 128)
batch liza 2 BatchMormalization La =
-pormatizalion_ . ’2; ™ {output:| (None, 16, 16, 128)
. input: | (Nene, 16, 16, 128)
leaky_re_lu_3: LeakyEeLu Laver output: | (Nome, 16, 16, 128)
¥
) input: | (None, 16, 16, 128)
dropout_1: Dropoul L‘“” output:| (None, 16, 16, 128)
input: | (None, 16, 16, 125)
2d_2: Conv2D La
0onv2d_2: ConvzD Lager cutput: | Qlone, 8, 8, 256)
| 4
batch Heation 3: BatchMormalization La input: | (MNone, 8, 8, 256)
ich_normahzation_ o 1:1:11:11 i cufput: | (None, 8, 8, 256)
input: | (None, 8, 8, 256)
leakw_re_lu_4: LeakyEelu La
ky_re_lu_ el faye cutput: | (None, 8, 8, 256)
i | input: | (None, 8, 8 256)
dropout_Z: Dropout "“‘3” cutput: | _(None, 8, 8, 256)
Hatteq: Fl - input: | (None, 8, &, 256)
e Flatien Layer l, outpul: (Mone, 163684)
) inpu: ihone, |6354)
denge_L: Denge Layer cutpul: [(Mome, 13

41

CGAN Result and Improvement

When we used the preprocessing method above to make the label as the condition,
the generated emoji was not following the label. It was no different from the normal
GAN, and we cannot control the generated emoji we wanted. The problem of the
initially provided label in the dataset is that it contains too much label. It contains

a total of 418 labels. If we took an in-depth look into it, those labels are too specific.

For example, this emoji l\\—-’/ contains [face, grinning, smiling, joy, teeth,
pleasure, cheer, open eyes, open mouth]. That is a total of 9 labels for one emoji.

This is way too much and shows that most of the labels are similar.

Therefore, we decided to make the label of each emoji by ourselves. We are not
just lowering the amount of the label, but also making the label more general and

not similar to each other.

We marked the label focusing on three main parts of the emoji — eye, mouth, and

other special effects. The example of other special effect is like these two emoji:

1f62f.png 1f63a.png

1162f.png contains the eyebrow. 1f63a.png is a cat.

42

14 conditions CGAN

To start with something simple to test it works. We picked the most general label

as our condition. Here is the table of our labeling, there is a total of 14 labels:

Eye

heart_eye m_eye sad_eye dot eye
'@ P fan] [- -] KR |
poker eye Xd eye
| ™ | l - ‘

Mouth
smile tougue laugh o_mouth
(S I =
poker face sad mouth
—d hd

43

Other

eye brow cat

I..n"' S
-

As we just selected a few conditions, it let some emoji cannot fit the condition.
Therefore, we just provided a total of 48 different emojis and a total of 236 samples

to train the conditional-GAN.

44

As we self-defined our CSV file (face emoji/emoji_onehot.csv), we needed to

modify our preprocessing method to handle the label that can feed into our model.

A B iC D
smile
1f60a
1f60b
1f60d
1felb
1f61d
1f6le
1f61f
1f62b
10 |1f62e
1f62f
12 |1f63a
13 |1fe3b
14 |1fé3c
15 |1f63e
16 |1f600
17 |1fe01
18 |1fe02
19 |1fe03
20 |1fe04
21 |1fe05
22 |1f606
23 |1fe07
24 |1f609
25 |1f6l0
26 |1f6ll
27 |1fe12
28 |1f613
29 |1fela
30 |1f6l5
31 |1f620
32 |1fe22
33 |1f623
34 |1f624
35 |1f625
36 |1f626
37 |1f627
38 |1f628
39 |1f630

tongue laugh

= [T=D - RN - R ¥, I S TE I C
00 0 0 0000000000000 R DD DD 0000000

00 0000000000000 KRMBeOOO0O000DO000RDOoOO0o000000 0
0O o0 o0 o0 o0 o0 o000 oOoo0o0oOo0 o000 ooo0o0o0oOo0oo00oo000RKEOO0

o e OO0 000 0000000000000 000000 RMeODO0O0o0o0 o000

0

00 000 OO0 0 KFFHOOFKFEFOOODOOOOOoOOo0 OO0 o000 o oo oo o oo

G

0

O O D R e e e e e O e D00 D 000000000000 RO OO0

H

0

00 0000000000000 0o0000000000RO0O00o00000ROo0

o_mouth poker_face sad_moutt heart_eye m_eye

00 0 0000000000000 QKR OO0O0O0O0O0 0000000 = =

sad_sye

0000000 000KKRDO0000oDo0000o0 0000000000 ROo0oO0oo0

K
dot_sye

o OO OO RO R RO OO0 RO OO RO OO R OO0

L M
poker_sye xd_sye
0]

00000 RO 0000 RO REDOO0O0O0oDO000o0o0o000o000o0o0 00

First, we loaded all the image paths from the file paths and stored them into a list.

Then we filtered the image paths by their filename is existed in our CSV file.

Furthermore, we also needed their file name to match our CSV file, so we stored

those names into another list.

45

DO 00 00K OO0 oDoOo0o0oOo0oOo0RKODO0oOo0oOo0oDoOoOo0o0o00o0EoOoOO0R>O$ODOO00

N
eye_brow cat
0]

L L= R R e = R =N = = R R = = I o I T R R R e I T e T e R = i = R R R]

(o]

0000 0000000000000 0000000RERRROODDO0O0O0o0O000

° paths = [

"/content/drive/My Drive/Colab Notebooks/face emoji/img-apple-64",
"/content/drive/My Drive/Colab Notebooks/face_emoji/img-facebook-64",
"/content/drive/My Drive/Colab Notebooks/face_emoji/img-google-64",
"/content/drive/My Drive/Colab Notebooks/face_emoji/img-messenger-64",
"/content/drive/My Drive/Colab Notebooks/face_emoji/img-twitter-64"

1
filepaths = [] #store all the image path that we used

labels = [] #store the file name
filtered = [] #store the image path that exist in our csv file
for p in paths:

image_paths = glob.glob(p + "/*.png"”) #get all the image paths

for p in image_paths:

for i in range(df.index.stop):
if p.split("/")[-1].split(".")[@] in df['emoji'][i]: #check the image file name is in our csv file
filtered.append(p)
for f in filtered:
labels.append(f.split('/")[-1].split('.")[@]) #store the image file name

filepaths = filtered

Next, we needed to create one-hot encoding labels. We made a Numpy array that

the size is matching our total number of the label.

° one_hot = np.empty((1, 14), dtype="int32")
for label in labels:
label = df.loc[df['emoji'] == label].drop(columns=["'emcji']) #drop the firsts columns which define the emoji file name
label = label.to_numpy()
one_hot = np.concatenate(({one_hot, label)) #put the csv file data into the numpy array

one_hot = one_hot[1:]

After that, we needed to change the label input shape of our generator and

discriminator. In this case, the input shape is 14.

The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))

z label = Input(shape=(14,))

img = self.generator([z, z_label])

def build generator(self):
noise = Input(shape=(self.latent dim,), name='noise in')
labels = Input(shape=(14,), name='labels_in")

def build discriminator(self):

labels = Input(shape={14,), name='labels in")

Here is some result after training 5000 epochs:

46

label: dot_eye, laugh

& A

)
g

i

label: heart_eye, o_mouth

label: poker_eye, poker face

! :‘i}‘ . Q'“w,'

¥ - L

We found that some of the generated emoji can produce an emoji that matches the

label. However, there was some mistake in matching the label. For example, xd_eye

47

cannot show on our model, and some emoji label with the cat did not look like a

cat. The model was not stable enough to produce the emoji that matched our label.

After checking the training loss, we found that the generator loss kept increasing

while the discriminator kept its loss low. That meant the discriminator is

0.0002, 5000 epochs

Batch size = 32, discriminator learning rate = 0.0001, generator learning rate =

dominating the generator.
Smooth Training Losses
—— Dloss |I|
8 G loss |' |F-'f\"-,"|
‘ wwiv |
Y\ \ (.|
d "%uwu W
Ty L !
'.lv" |'HJ I|| b
44 Il.f‘"\‘illJ
[
|
2 4
u_
0 20 a0 60 a0

25

20 1

Training Losses

T
0

T T T T
2000 4000 6000 8OO0

48

Therefore, we tried changing different parameters to see if the generator loss can

be better, and the image generated can be better to match the label.

Batch size = 8, discriminator learning rate = 0.0001, generator learning rate =

0.0002, 10000 epochs

Smooth Training Losses Training Losses

| = Dloss
G loss

. Hﬂ NW ’M)

w{ D loss
G loss

| ol

6 JIU 4:3 5;3 35 160 iIJ JOICID 40|00 EOICID BDIOD 10(:0
Label
dot_eye, laugh heart eye, o mouth poker eye, poker face
i e
Coctm i Wiioamy
: 1 :
* =
‘.__.,..—u_ P ; ™,
.1 ’ ‘H;f

sad_eye, sad mouth, cat | xd eye, smile,

eye brow

Y 48
2 O
3 s
S T
9 i‘*‘!
L K2
P A2

N/ g}/

0y,

49

Batch size = 128, discriminator learning rate = 0.0001, generator learning rate =

0.0002, 10000 epochs

Smooth Training Losses Training Losses
= D loss 2 |
81 G loss
Al
61
|]5 -
4
10 -
0 - N
0 2 40 &0 80 100 0 2000 4000 §000 8000 10004
Label
dot_eye, laugh heart_eye, o_mouth poker eye, poker face
= - -:__

o ey

!
i
i

sad_eye, sad mouth, cat

| |

¢,
¢
G
P

50

Batch size = 8, discriminator learning rate = 0.0001, generator learning rate =

0.001, 10000 epochs

Smooth Training Losses Training Losses
— D loss 175 D loss
= G loss '
81 15.0
12.5 A
5
10.0
4 4 7.5 4
504
2]
25 4
0 0.0
0 70 40 6‘0 20 100 CII 20‘00 40EJD 60‘00 HIJIOD 1060[}
label
dot eye, laugh heart eye, o mouth oker eye, poker face
g b g b ., . 2 —_

b-"—" - '--A--n—"".
v . e e
‘!. *‘ﬁ. \,‘J “ - b
SR "'l“ e —
L O | T
. = g, i - i

51

Batch size = 8, discriminator learning rate = 0.00005, generator learning rate = 0.0002,

10000 epochs
Smooth Training Losses Training Losses
7 —— D loss 10 4
B G loss '\lﬁ | '|
5 L~V "“W'J ,/1“ WH B
4 ||||I ||f“~\l| AV .
3 'l"
i IIWp\\l
2 | N
N W 27
of |
-1 | o
0 20 40 80 B0 100 0 2000 4000 5000 8000 10000
label
dot_eye, laugh heart eye, o mouth poker eye, poker face
2. 4 o & e #a = (v 6
- e - L e \go/
ﬂ‘ﬂt ‘%Q‘J; Hor ¥ 3 2 s

sad_eye, sad mouth, cat xd_eye, smile, eye brow

=8 9.0

-

The above result shows that batch size = 8 have a better-generated emoji because
those label condition we tested seems to have more correctness than batch size =
128. For example, batch size = 8 can generate sad _mouth as expected but batch size

= 128 cannot. Adjusting the learning rate of the generator higher seems to have not

52

much different while adjusting the learning rate of discriminator lower makes the
result worse. For example, the model even cannot generate a cat or heart eye while

others can.

As aresult, we can just modify the batch size smaller to make a slightly better result,

but the result was still not good enough.

Also, we found out that no matter how we modify the parameters. The generated
emoji with labels dot eye and laugh always can be generated as expected. By
checking our inputted emojis, we found out that dot eye and laugh had many
emojis that were labeled by them. Moreover, when we marked the label in the CSV

file, we made similar eye/mouth batch together in one label. For example, these

A A
o

three emojis we all labeled them with a smile, but

actually, they have different smiles.

Therefore, we thought that if we increase the number of our training data and make

the label more specific, we can make other labels can be generated as expected too.

53

58 conditions CGAN

As a result, in our second try, we designed a total of 58 labels:

Eye

m_eye m_eye small small w_eye heart eye
_ - : r Y
THH1 F‘_"‘-] B il l"a
sunglass tadpole eye bold one eye dot eye
] I~ = I--1 [o -]
0 eye XD eight eye cry
=
roY -1 [[--1 w
cat_eye laugh tear twinkie eye dash_eye
N | e =] e
white eye X_eye star_eye
|
Mouth
smile small_smile 1 smile 1 smile v2
L*---'J L~ d h—d e
laugh laugh R 3 mouth n_mouth

54

=4

=y

w34

=y

small n_mouth big n_mouth open_n_mouth 0_mouth
A Aod =4 o4
o_mouth big o mouth cruse_mouth dash_mouth
T W v w
ed Mo L
small dash mouth | ww_mouth side tougue
7

- d -
teeth laugh teeth laugh teeth full | omg
mask open_small n_mouth

=y

Other

eye brow

nose_ water

rjh
'

A=

tear

swearing

angle

55

Y P

heart sad blue head sleep

Based on the above labels, we provided a total of 68 different emoji and a total of
331 samples to train the conditional-GAN. Some of the emojis are labeled as the

following:
! m_eye, smile, shy
@ m_eye, side_tougue

small w_eye, small smile, eye brow

dot_eye, small n_mouth, eye brow, red face

56

Then, we made a one-hot encoding CSV file that labeled each face emoji one-by-

.CSV)

(face_emoji/emoji_onehot v2

one. Here is part of the original data in the file

1 emaji 1!

1f60a
1f60b
1i60c
1160d
1f60e
1760f
1f61a
1i61b
1i61d
1i61e
1i61f
1i62a
11620
1i62c
1i62d
1i62e
12t
1id3a
1163b
1i63c
1i63d
11632
1183t
1i92¢c
11600
1601
1602
11603
11604
1605
11606
11807
11608
11609
11610
161
11612
1613
1514
11615
1i616

m_eye, emile, sh
m_eye, side_tou
small_w_sye, sm
laugh, heari_eye
sunglass, smile
sperm_eye , eye.
3_mouth, shy, bo
tougue, dot_eye
tougue, XD
small_n_meuth, ¢
n_mouth, dot_ey
small_w_sye, no
XD, laugh_R, ey
dot _eye, teeth
cry, 0_mouth, eyt
dot_sye, o_mout
dot_eye, o_mout
cat, laugh, cat_ge
cat, heart_eye, Iz
cat, |_smile, cat_
cat, 3_mouth, bol
cat, n_mouth, ca
cat, small_n_mot
red_face. dot_sy
det_sye, laugh_t
m_eye, laugh_tel
m_eye_small, la
0_eye, laugn_te
m_eye, laugh_el
m_eye, laugh_ter
XD, laugh_teeth
m_eye, smile, an
devil, smile, eye_
twinkie_eye, sma
dot_eye, dash_m
dash_eye, dash_
sperm_eye, smal
m_eye_small, sm
small_w_sye, sm
dot_eye, |_smile_
XD, ww_mouth

= R R R R R R R - - R - R - R N R R R R R RN N -~ R

D
m_eye_small

o0 D -0 0000000 oD-00000o0oCo0oDoo0Doo0ooDoooDooDoooo

£
small_w_eye

R = R R R R R R - R = N R R R - R - R R - R R R R - R — R — R~ RN - =R N - R — N -1

E
heart_gye

o0 0 00000000000 o000 00oo 4000000000 ooDoooDSo oo

sunglass

00 D 00D 00000000000 0000000000000000000=0000

H
Sperm_eye

= R R O R - R R R R R R R - R R N R R R R R R RN R N - - N~

1
bold_one_eye

o0 oo oD o000 o0ooDooDooo=S00000Do0o0oDo0oo=S0000o00

a
dot_eye

R = R R R R — T I — R = R R R e R~ R R R e — R — R — R — R — R — R — R N~ — N -1

0_eye

o0 o o0 D00 0000 oS000000o0oco0oDoo0Doo0ooooooooDo oo

XD

-0 0 0000000 =-00000000000c000000 =000 =-00000coo

M

eight_sye

o000 0000000 oC oD oo0DoooooCooDoo0Doo0o0D-o0o0o0ooo oo

57

We used the same method as 14 conditions CGAN to preprocess the data and input
to our model. Here were some results after training 10000 epochs. We found out

that some of the results look accurate based on our set condition. For example:

Label: sunglass, 3 _mouth

Label: dot_eye, tongue, blue head

Label: star eye, smile, shy

J- ‘!;
f iy

CR AR

e

58

We observed that some of the results are not what we expected. After checking our

self-made one-hot CSV file, we found out that some of the labels just used on one

emoji only. For example, star_eye just used on 1{929.png 1929.png |

Therefore, we got the same problem when we are testing 14 conditions CGAN. We
thought that the lack of training data is our leading problem that made our CGAN

hard to find the pattern of condition.

59

4.3. Overview of Pix2Pix

Based on the knowledge of the CGAN and Pix2Pix. We built the GAN model, as
shown. The general structure between CGAN and Pix2Pix is similar except the
input of Pix2Pix is an image not a point from the latent space, and the label of

Pix2Pix becomes a target image, not an integer array.

Pix2Pix

I > Discriminator —_— Pg:;itﬁd
Target image T
?r?]:;:: » Generator » Fa:(rﬁ;:;get Target image
Each Each
Downsample/Encoder(pix2pix)| Upsample/Decoder(pix2pix)
N . R B
Cor)\tQD_._b Batch >
strides A LeakyRel U R Batch » —
=242 Mormalization {:ngtun;dl:;‘grinzsxpzose No mal;;aiion Dropou LeakyRellU

60

Pix2Pix: Generator
Below is the U-net structure where the first half is the encoder, and the second half
is the decoder. The layer with the same output size in the encoder and the decoder

has a connection between causing the skip connections.

input | [, 256, 256, 31
input_2: InputLayer
cutput: | [7, 256, 296, 3]]

Y ~
mput | (7, 256, 256, 3

seqquential_15: Sequential
- output. | (7, 128, 128, 32)

[

input: | (7. 128, 128, 32)
secquential_16: Sequential
output: | (7, 64, 64, 64)

Encoder/Downsample

aput | (7, 64, 64,64
seequential 17: 5 equential

output | (7, 32, 32, 128)

mput [(2,32, 32, 128)
output: | {2, 16, 16, 256)

sequential_{8: Sequental

input: | €, 16, 16, 256)
sequential_19: Sequentil
output: | (7,8, 8, 256)

input: | (7, 8,8, 256)

serquental 20: Sequential
outpat: | (7, 4,4, 236)

(7 4,4,256)

sequential_21: Sequential
- anpm (2,2,2, 256)

mput (7 2.2,256)
output | (7, 1, 1, 256)

&wml, 22: Sequential

o

nput: | (7, 1, 1, 256)

] 2% Sequential
= Dlll‘pui (7, 2, 2, 156)

mpm 17, 2,2, 256), (2, 2, 2, 256)]
uutput 2,22, 512)

concatenate: Concatenate

7, 2,2, 512)
serjuential 24: Serquential
output | 7, 4, 4, 256)

input: | [7, 4, 4,256), (7, 4, 4,256)]

concatnate_: Concatnate
- output 9.4, 4,512)

,4,4,512)
sequential 25 Seqpuential
uurpul (2,88, 256)

npat: | [7, %, 3, 256), (7, 8, 8, 256]]
concatenate_2: Concatenate
- ot 2,3,8,512;

5.3, 513)
sequential_26; Sequential
output | (7, 16, 16, 256)

input. [[, 16, 16,256), (7, 16, 16,256)]
consatenate_3: Consatenate
output (7,16, 16, 512)

aput | (7, 16, 16, 512/

secquental 275 exyuential
- umpm (7,32, 32, 156)

mpm 17, 32, 32, 256), (7, 32, 32, 1381
Dutput ?,32, 32, 334)

concatnate_4 Concatenate

input | (32 32,339
sequential 28: Sequential
m.epm (7, 64,64, 64)

(7 64, 64, 64, (7, 64, 64, 64]]
Dntpm (7, 64, 64, 128)

| concatenste_5: Concatenate

Decoder/Upsample

put. | (7, 64, 64, 18)
sequential_29:S equential
w«pm (7,128,128, 32)

mp\ll 3, 128, 128,32), (7, 128, 128, 3
concatrate_6: Concatenate
umpm (7, 128, 123, 64)

!

comv2d_ranspose_{ 4 Com2DTranspose

nput. | (7, 128, 135, 54)
output | (7, 256, 256, 3)

61

Pix2Pix: Discriminator

Based on the pix2pix paper (Isola, Zhu, Zhou, & Efros, 2017), the discriminator is
a PatchGAN where the output is a (batch size, 30, 30, 1) shape. Each 30x30 patch
of the output classifies a 70x70 portion of the input image, which means that we
manually chopped up the image into 70x70 overlapping patches, run a regular

discriminator over each patch, and averaged the results.

Discriminator

256x256:3 Concatenate Leaky
source image Relu
Coneatenate 128x128x64 Conv2D
Conv2D
256x256x3
target image
Batch
Normalization
+ Leaky Relu
Baich
MNormalization
+ Leaky Relu
. -
31x31x512
< _ | .
Conv2D Zef:;g:;izrfﬁm 32x32x256
g Conv2D
Baich
Normalization
+ Leaky Relu
30x30:1
33x33x512 I — 30%30x1 ———————» ftrueffalse
ZeroPadding2D Conv2D output

62

Pix2Pix Methodology

Encoder-decoder network

Based on the paper of the encoder-decoder network (Hinton, 2006). The encoder
takes the images as input. Then each layer is gradually downsampled until the last
layer, which is the bottleneck layer, and it outputs a feature vector. On the other
hand, there is a decoder with the exact network architecture as encoder but in a
reverse direction. On the contrary, the decoder tries to output as closely related as

the original input as possible.

i : Decoderé

{wl

| 2000 |

Encoder-decoder. (Hinton, 20006)

Nevertheless, in real-life applications, researchers usually do not use it to
reconstruct the original input. Instead, it is used to map and translate to the certain

desired output, for instance, highlighting a particular object in an image.

63

U-net

U-net is the generator in Pix2Pix adopts (Ronneberger, Fischer, & Brox, 2015). In
essence, U-Net is an improved version of encoder-decoder. U-Net has the same
architecture of encoder-decoder but with the addition of skip connections. Isola et
al. (2017) stated that it is specially picked to handle translation problems, “there is
a great deal of low-level information shared between the input and output, and it
would be desirable to shuttle this information directly across the net.” As mentioned
in the previous paragraph, encoder-decoder has a bottleneck layer in the middle,

and some information might be lost during the process.

U-Net

U-Net. (Isola, Zhu, Zhou, & Efros, 2017)

In the above figure, the layers with the same size in encoder and decoder are linked
together. Those links allow the information to circumvent the bottleneck. Because

of this, U-Net yields a better result than encoder-decoder as tested in the author’s

paper.

64

L14+cGAN

Encoder-decoder

U-Net

U-Net produces a much better result. (Isola, Zhu, Zhou, & Efros, 2017)

PatchGAN

Isola et al. introduced a new network called PatchGAN to enhance the discriminator.
In a normal GAN discriminator, a deep convolutional neural network is used to do
the classification. As the name suggests, the PatchGAN classify patches of the input
images as fake or real instead of the whole image. In detail, the image is split into
NxN patch or grid. The discriminator will determine each patch as fake or real
convolutionally. The output is a feature map that consists of predictions that can
map to a specific size of the source image. Then, averaging all the patches yields
the final output of the discriminator. The advantage of PatchGAN is that it can take
arbitrary sized images as input. Besides, Isola et al. (2017) found that a 70x70 patch

size performed well across various image-to-image translation problems.

65

Loss function

Adversarial loss (MiniMax Loss)

It is similar to the original GAN loss function, but some of the input parameters is

different.

E.|log(D(x,y))| + E,[log (1 — D(x,G(x)))]

x is the real input image
y is the ground truth/target image

D(x,y) is the probability of the discriminator’s estimate the real image x and ground

truth image pair is real
G(x) is the generator’s output when given image x

D(x, G(x)) is the probability of the discriminator’s estimate the fake image G(x)

and ground truth image pair is real
Ex is the expected value of all the real images and ground truth image pair

Ey is the expected value of all the fake images and ground truth image pair

The generator aims to minimize this function while the discriminator aims to

maximize this function.

66

Pix2Pix Result

As the training of the pix2pix needs to match the same image of the source image
and the target image (ground truth). We made a program to combine two same
Chinese characters of different font/handwritten words to one image. Here are some

examples of the images:

(the left character is the ground truth; the right character is the source image)

— Jt §= Jr fF BN (35 U B3 PN K% CE (4 £5A

—ipg +ipg Zipg tipg Tirg E\;J @w;; ©pg jp Zipg Firg Z.jpg *w;

END Kl X1 B8 B3 P2

ﬂL\;; Firg =irg Eipg Hirg ‘H;; Zipg EEU»; ipg

X CNE (o U DTN NE (FRE A N Y 1Y I

Pipg ftaipg Hipg % .pg Llipg #ipg Eipg 1Bipg

Combined image with handwritten image as input, hzwong as ground truth

—ipg +tipg Zieg Firg irg

aLipg Tirg Fieg B M; ipg) Fipg Fipg tipg iPg vipg

A G0 3R P RO [GRED (P2 B A (RG] VP (EXE [P AR (3

ww; fhipg 5pg fEipg g ?.ipg {jpg #Lipg 18jpg fitjpg {Eiipg P9

fFipg Ripg g %ipg [{2ipg [#ipg 18ipg 1&g

_-----

1!'1\;3 m;; ﬂ irg {#ipg 7Lipg Fipg

Combined image with DFKai-SB image as input, hzwong as ground truth

Then we put these images into the train folder for training the network and the test

folder for output some samples for us to evaluate.

67

Our first training is using DFKai-SB font as the source image and MingLiU font as
ground truth to test our model is really working as these two fonts look very similar
in style. Here is some result after 50 epochs with batch size 1: (left image is the

source image, the middle is ground truth and the right is generated image)

1 K A A ek /L~ S
M g EE XKD
We can observe that the generated image is very similar to the ground truth. It

shows that our network is working.

Then we use DFKai-SB font as the source image and hzwong font as ground truth

to put into the same network to test our model, and the result is like this:

P B He T

(N

S5 B e b g
4
O A LG e B

B s o

By just observing the photo, we can notice that the generated image become not
similar to the ground truth, and some of the generated images cannot recognize the

character suchas "2 | & |

68

When we use our handwritten word as the source image and hzwong font as ground
truth. We cannot recognize any of the generated image’s Chinese characters. The

result gets worse than before:

Z U 1 4
% i 7
& X A
% Al F 4
€3 A~ L 4
* £
7 = #
£ 4 ¢
4 R k4
1 18
Problem of Pix2Pix

We think the problem is about the similarity of different Chinese characters in the
same font. For the font like DFKai-SB and MingLiU. Their structure of the Chinese

characters is precise and rigid. For example, the Chinese characters of DFKai-SB

e‘% 2‘&
@A 9F= 'We can notice that the radical " % | of these two images are in exactly
the same place. Moreover, their stroke (e.g.# B #<t4z 2) on different Chinese

characters looks the same on their font. For example, in the below figure, these 4

Chinese characters in DFKai-SB font have four same stroke styles of 4z.

69

ESESFNES

In the case of hzwong font and handwritten Chinese character, because both of them
are handwritten characters. We cannot make the character precise and rigid on the
pixel level. So it causes each character to have a slightly different style, but the
model cannot generalize the difference. For example, these 4 Chinese characters in

hzwong font have four different stroke styles of 4z.

KARA

As aresult, we need to make the model more general to learn the style of the font.
We need to make the model not learning by the one-to-one Chinese character font,
but learn by all the Chinese characters of the font. That means we need an unpair

image for training.

70

4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN)

We based on the Pix2pix network and followed the idea provided by Cycle-

Consistent Adversarial Networks (Zhu et al. 2017) to create our model.

CycleGAN

Target Predicted
; _ > —_—
image(B) Discriminator for B Result

|

Source Cycled A
- —_— . :
image(A) Generator Ato B Fake Bimage ———————> Generator Blo A —————» o0

Source R Predicted
image(A) }—b Discriminator forA ——» Result

Target . Cycled B
—> £
image(B) » Generator BtoA ————»Fake Aimage———» Generator Ato B e

71

Model design

Cycle GAN: Generator (5 ResNet version)

The first part of the generator is the encoder, which will extract the features from
the image. Then it will go to the transformation part, which is the ResNet to
combining the feature of 2 different font/handwriting. The last part is the decoder,
which reconstructs the image by the feature and the transformed feature of the

image as output.

put: | (12, 256, 236, 3]
output. | (17, 256, 236, 3)]
I

nput_3: InputLager

g

input: | (7,256,256, 3)
sequentil_50: Sequential
output: | 7, 128,128, 32)

f—

Downsample/

it: (7, 128,128, 32;
conquental_31: Sequentl | T | 125 128, 32) encoder
- outpar | 64,64, 641
WREES
sonpuential_ 52 Senquenta] | DL | 64 64 64
output: | (7, 32, 32, 128)

input: [(2,32,32, 128)
output | (7, 16, 16, 236)

fe—y

-~

secuential_53% Sequenta]

put | (7, 16, 16, 256)
sequentis] 54 Sequential
output: [(7, 16, 16,256

| (7, 16, 16, 256), (7, 16, 16, 256)]
©, 16,16, 512)

| coneatenate: Concatenate

input | (7, 16, 16, 512
outpat: | (7, L6, 16, 256)

sequential 55; Sequental

5 resnet

imput | [¢7, 16, 16, 256), (7, 16, 16, 512)]
©,16, 16,768

| conzaterate_1: Concatenate

wpt [7, 16, 16, 768

sequentin] 56: Secuential
= output: | 7, 16, 16,256y

7, 16, 16, 256), (%, 16, 16, 768)]
output (2,16, 16, 1024

| comatenate_2: Concatenate

input_| (7, 16, 16, 1024)

sequentl 57: Sequental
output: | (7, 16, 16, 256)

input | 7, 16, 16, 256), (7, 16, 16, 1024]

concatenate_3: Concatenate
‘ - ontput: (2,16, 16, 1280)

input | (2, 16, 16, 1280)
Seequentil 32: Sequental
output: | (7,16, 16, 256)
put. | [16, 16, 236), (7, 16, 16, 12801

comsatnate_4 Consaterats
- output: (2,16, 16, 1536)
I

input: | (7, 16, 16, 1535)
output: | (%, 32,32, 256)

Sequential_59: Sequentl

f—

upsample/
input; | (7, 32, 32, 256) decoder
output | (7, 64, 64, 64

‘ serquential_60: Sequential

—

inpt: | (7, 64, 64, 64)
output: | (7, 128, 128, 32)

I
]

sequential 61: Sequental

put_ | (2,125, 123, 32)

convd_tanspose_22 Conv2DTmnspose
output | (7, 256, 256, 3)

72

Downsample/Encoder(ResNet ver)

Leaky
258x256:3 Relu
mage IEIZE L % gac4d
ConvZD Conv2D
Instance
Mormalization
+ Leaky Relu
Instance
Inztzncs Normalization
Mormalization + Leaky Relu
+ Laaky Relu e
to resnet - 000
po=t ?’fgﬂ 33322128
—an Conv2D
Upsample/Decoder(ResNet ver)
Baich
MNormalization
+ Dropout
5 Resnet = Relu R
>
16:x16x1536 131756 » GdxB4x128
Conv2DTranspose Conv2DTranspose
Eatch
MNormalization
+ Dropout +
Relu
Batch
tanh <«— 1 Mormalization
Fake Image + Relu
256?{255}%3 * 256x256%3
ConvZDTranspose — 128128464
Conv2DTranspose

73

5 Resnet

Downsampla’
Encoder
16152255 / ™
Concatenate
+relu
Instance
Mormalization
+ Relu
16816256 16x16x256 Instance
Conv2D Conv2D Normalization
. Sequential
" layer 4
Concatenate
18x16x768 - +relu
Concatenate Sequentlal
layer
fr- Concatenate
+ relu
Sequential > 161821024
|a}r'er J Concatenate
e
Concatenate .
18x18x1024 < * relu |
Concatenate Seq uential
layer
-,
‘ Concatenate
3 + ralu »
Sequential » 16181528
Iayer ‘ Concatenate
vy
to upsample’
decoder *
181821536

74

1616512
Concatenate

Cycle GAN: Discriminator

The architecture of discriminator is nearly the same as Pix2Pix’s discriminator,

except we do not have the target image as the second input.

Discriminator

Lealky
Relu

256x256x3 | » — —————> GduBdx128

image
? 1285128464 Conv2D
Conv2D
Instance
MNormalization
+ Leaky Relu
Instance

Normalization
+ Leaky Relu

31x31x512

-— .
Conv2D Ze?:;:::)aizr?GED 12x32x256
g Conv2D
Instance
Mormalization
+ Leaky Relu
30x30x1
33x33x512 — 30%30x1 » frueffalse
ZeroPadding2D Conv2D output

75

_ _ mput: | [[?, 256, 256, 3)]
inpmt_nrrage: InputLayer
output: | [[?, 256, 256, 3]]
mpnt: | (¥, 256, 256, 3}

sequential 5 equential

output: | (7, 128, 125, 64)
. _ mput: | (7, 128, 1258, 64)
sequential 1: Sequentil
outpat: | (7, 64, 64, 128)
L J
pnat: | (7, 64, 64, 128)

sequential 2 Sequential

output: | (7, 32, 32, 256)

'

zero_paddmgdd: ZeroF adding 2D

Inpmt:

]

'

mpnt:

(7, 34, 34, 25a)

corrr2d 3 Com2D

autput:

{7, 31, 31, 512)

'

mstance notmabzabon 2 Instancelormahzation

(7, 32, 32, 256)
utpt: | (7, 34, 34, 258)

mpuat: | (7, 31, 31, 512)

'

mput:

(7, 31,31, 512)

kaky re ln 3: LeakyBell

autpnat:

(7, 31,31, 512)

'

zero_paddme2d 1: ZeroPadding2D

ingut: | (7, 31, 31, 512

output: | (7, 33, 33, 510

'

Inpnt:

(7, 33, 33, 512)

cotrad 4 CowdD

output:

(7. 30,30, 1)

76

output: | (7,31, 31, 512

Cycle GAN Methodology

Residual block (ResNet)

According to the cycle GAN paper, when they build the generator, they use several
residual blocks as a transformer between encoder and decoder. According to the
Deep Residual Learning paper (He, Zhang, Ren, & Sun, 2016). Residual block is
creating a short cut connection on the plain network. One of the functions is to
ensure the properties of input of previous layers are available for later layers as well.
In handwriting style changing, we need to keep the handwritten Chinese character
in its own shape when passing through each layer of the generator, making the

output image will not be extremely different from the original input.

Another function is that when the training progress is nearly saturated, it will cause
the identity mapping problem, which means that the layer’s parameter will not
change scientifically, making the accuracy of the model decrease. As the property
of backpropagation is started tuning the layer near the output layer, the higher layer
of the model cannot be well trained. ResNet can train the model better because the
skip connection makes the backpropagation process can train the higher layers even

through, the lower layers are well trained.

x g

F(x) relu F(x) relu X
identity
y
N -
HO) = FG) H@ =F@+x (+)—

Plain layer Residual Block

A plain layer compares to the residual block (Zhang, Ren, Sun, & Jian. (2015))

77

DenseNet

ulF’”t

-]
’Laf',

itic!
r:ra,"’,-/\
L=

S-layer DenseNet Block (Huang, Liu, Maaten, Weinberger. 2018)

The paper Densely Connected Convolutional Networks (Huang, Liu, Maaten &
Weinberger, 2018) suggest a new network architecture that can improve
information flow between layers with different connectivity pattern. It is similar to
ResNet but more skip connection. The concept is that the layer will have a direct
connection to all subsequent layers to implement feature reuse and increase the

efficiency to train the network.

Loss function

For discriminator, we use the same loss function of Pix2Pix. For generator, include
the similar adversarial loss from Pix2Pix, we add one more loss function that is

called cycle consistency loss.

78

Adversarial loss

E,[log(Dy ()] + Ex[log (1 — Dy (Gyoy ())]

E.[log(Dx (x))] + E, [log (1 = Dx (Gyox(»))<

the first formula is generator x to y and its discriminator Dy

the second formula is generator y to x and its discriminator Dx

x is the real input image (stylel)

y is the target image (style2)

Dx(x) is the probability of the discriminator’s estimate the real image x is real
Dy(y) is the probability of the discriminator’s estimate the real image y is real
Gx>y (x) 1s the generator x to y’s output when given image x

Gy-x (y) is the generator y to x’s output when given image y

Dx(Gy > x (y)) is the probability of the discriminator’s estimate the fake image
Gy->x (y) is real

Dy(Gx >y (x)) is the probability of the discriminator’s estimate the fake image
Gx>y (x) is real

Ex is the expected value of real images x or fake images x

Ey is the expected value of real images y or fake images y

Both generators aim to minimize the function while both discriminators aim to

maximize the function.

79

Cycle Consistency Loss

. Ly Dx
S N - N
4 Y ~—0 v Y ~N— A X Y
F F
X - Y X v _
cycle-consistency
cyele-consistency ‘\./ > '"'"*.\S _____ e loss
) loss T O«_]] <-_)

This model does not need to pair the image data to do the style transformation.
Cycle consistency loss is the supervising signal for the model training. This concept
explains that when a source image A (x) transform to image B (G(x)) by the
generator A to B (G) then use the generate image B (G(x)) transform back to image
A (F(G(x))) by the generator B to A (F). In theory, the source image A (x) and the
cycled image A (F(G(x))) should be looking the same. Therefore, when training the
model, the difference between the source image A and the cycled image A and the
difference between the target image B and the cycled image B will be the loss of

both generators. In math formula, it will look like this:

Lcyc—X: |x - F(G(X))l

Leyey =1y — G(F(¥))I
Lcyc-total = Lcyc-x + Lcyc-y

Therefore, the total loss of the generator = generator’s adversarial loss + Cycle

consistency loss.

80

For all the results below. Unless further specify some parameters, we are using 15
epochs for training, batch size = 1, learning rate = 0.0002 with Adam optimizers,
and using the same discriminator. Furthermore, those images show below are all

unseen images when training the network.

Cycle GAN Encoder + Decoder Only Version Result

To test our Cycle GAN training progress is working. We implement the basic
encoder-decoder only generator. Moreover, as the baseline for further improving

our generator comparison.

Encoder + Decoder only

Leaky

356:256x3 Relu

image

o
L . — B4xGdxts
ConvzD ConvzD

Instance
Mormalization

+ Leaky Relu
Instance
Normalization
+ Leaky Relu
—— |
16:18x256 322322128
ComwZD Conv2D
Instance
Normalization
+ Leaky Relu
Batch
Normalization
+ Dropout
+ Relu
N —
3237258 G64x84=128

ConvZDTranspose Conv2DTranspose

Batch
Normalization
+ Dropout +
Relu

‘ tanh Baten

Mormalization
Faks Image +Relu
2582582 i
Conv2DTranspose 1282128204
Conv2DTranspose

81

S5 iy

c

g W SR 3
b 8 g G 2

& ol A O
%grl‘

+

ol
==
%

We can observe that by just using the encoder-decoder architecture, the generated

image can learn some of the styles from hzwong (marked as red circle).

82

Cycle GAN U-net Version Result

Next, we are trying to modify the generator of Cycle GAN to the U-net structure,
just like Pix2Pix’s generator. As mention above, the U-net structure also using the
similar architecture of encoder-decoder except for the encoder, and the decoder will
down/unsampled until the bottleneck layer reached, and it added the skip
connection to directly pass the feature from the input image between encoder and

decoder.

As aresult, we move the generator of Pix2Pix and port into Cycle GAN’s generator
and use our handwritten and hzwong font with the same setting to train the network.

The result as follow:

(left side is the handwritten input image; the right side is the generated image)

N o I

83

¥ R %P
3% 3% 15F 43R

By just observation, we can see not much different compare with the encoder-

decoder only network result.

In addition, we tested on the characters from Mr. Chen Chung Chien and our other

handwritten style on a network trained with 16 batch size and 100 epochs.

Input Predicted Input Predicted

TEL

EX /-5/7
"

X

»
/ /
/
From the above result, we can observe that the overall structure of the characters is

generated. Nevertheless, in some complicated words (second row), the lines are

84

tangled. Still, we can see some characteristics in Chinese calligraphy. In # 3% and

%, the network utilizes the concept of 4= ¥ and = ¥ .

Cycle GAN Resnet Version Result

This time, we use ResNet block to the generator mention on the network
architecture above, but we use three blocks of ResNet first. We use DFKai-SB font
and hzwong font to test our network is working. The input image below is all

unseen images.

(left side is the DFKai-SB font input image; the right side is the generated image)

%4 A B
4 ABR AR

,?1\ ZN 3@; X

13 http://163.20.160.14/~ntc/mod/page/view.php?id=22

85

=52 -:I:Q
A A

As we can observe clearly, the input image with DFKai-SB font and the generated
image with hzwong font is nearly identical. Cycle GAN does not need to pair the
image data between 2 fonts. There is no ground truth as the target image to move
the shape of the Chinese character, so the stroke placement in the image are the
same. Moreover, if we observe carefully, we can observe that the style has changed
a little that looks like hzwong font. As a result, it is hard to tell that our network is

working or not.

Therefore, in our second approach, we use our handwritten and hzwong font to train

the network with three blocks of ResNet. The result is as follow:

(The left side is the handwritten input image; the right side is the generated image)

&

5 B 5%

)

%W
3% & E 1K

This time we can clearly see that the style changing of the handwritten Chinese
character. We can observe that some styles of hzwong font can be learned (mark as
ared circle on the image). However, we notice some problems that if the strokes of
the input image are really close to each other, the generated image’s strokes will
overlap with each other(mark as a green circle on the image). But the overall result

is still acceptable.

So we try to add more blocks of ResNet to check if it has any improvement. Below

is the 5 ResNet block of the generator with unseen image:

(The left side is the handwritten input image; the right side is the generated image)

Bt wE &

N

6 B &

\
3 \ E/g
J& /
S 5.
\
% 3 10k
We can notice some improvements in the generated Chinese characters. The shape

of the image is clearer. For example, the dot of the character " %% | , the bottom
right part of the character " 5& | . They look sharper and show the style of hzwong

font.

Cycle GAN ResNet + U-net Version Result

While the generator of the ResNet version can produce more similar images to the
ground truth, and the U-net can also produce similar results. However, the ResNet
version generator has one problem. Some features of the input image may disappear
while passing through the encoder. Therefore, we want to combine those two types
of methodologies to create a new generator. The idea is simple; we based on the
ResNet version generator and added the skip connection between encoder and
decoder so the feature of the input image will not lose during the encoder part of
the generator. As we think that the skip connection can help to do some of the

transformation processes and improve the generated image result.

88

(The left side is the handwritten input image; the right side is the generated image)

i A~

5 6% %

We can observe a significant result that is the Chinese characters " £ | . We can

see every stroke clearly, and the style changed comparing to other architecture

above. Moreover, we can also observe that the dot of " 3% | is much brighter than

the other two.

89

Cycle GAN DenseNet Version Result

Lastly, we implement the three blocks of the DenseNet version of the generator to

test the result.

3 DenseNet

DenseNet
Block

e | DenseNet DenseNet
16161535 Block Block

(The left side is the handwritten input image; the right side is the generated image)

I

90

The result shows that it is not much different compare to the ResNet version. We
think that maybe our DenseNet layer is not enough to train through the
characteristics of the font. Therefore, we add more DenseNet blocks to the
generator to train. However, because of the dense shortcut connection. The channel
of the layer becomes larger and larger; it needs to read the memory more frequently.
Causing the cuDNN always crashes due to memory reason, so we cannot see the

result.

Non-Chinese character Result

As Cycle GAN is mainly learning the style between 2 font but it does not learn
what is the word exactly. Therefore, we try to input some non-Chinese character
into the trained network to show that the style is also working on other language

even though the network never seen those shape of the character.

(The left side is Korean character, the right side is Japanese character)

Using 5 Resnet version generator result:

91

T T OO0
TeHH

Using ResNet and U-net version result:

We can observe that those non-Chinese characters can generate the image with the
hzwong font style. It shows that our network is general enough to learn the font and

apply it to other language’s characters.

92

5. Difficulties and Solution

The transparency layer of the image

All the images we collected have four channels — RGBA, when we input those four
layers as input and train for a long period of the epoch, but the GAN still cannot
find the pattern of those images. It keeps change the background color for a long
epoch until around epoch 3000. We can finally observe some shape of the emoji. It

is wasting time and resources to train.

Epoch 30 Epoch 465 Epoch 960

Epoch 2055 Epoch 2550 Epoch 3235

93

As a result, we decide to remove the transparency layer for training. Although the
results may not as beautiful as the image contain transparency, the training time is

much faster.

Either generator or discriminator is too good

GAN has two separate training networks; we need to handle those two networks

not to defeat the other one entirely.

If the generator is too good, the discriminator needs to guess the result randomly.
It makes the feedback meaningless, causing the training becomes random, making

the quality of the image becomes worse over time.

If the discriminator is too good, the loss value provides to the generator become

nearer and nearer to 0, making the generator stop training as the gradient is 0.

94

W W
Puoew W \m\av‘
Wl el :
Wove

e :
WO HEeE
el el
Ve Ve

_at_epoch_ 0

C&m TfT] @

® image_at_epoch_0

C&w:}?w@ C&w:}?mw

t_epo ch_0 1 epoch_0 epo ch_0
g

The generator has no progress after a long period, and the loss value of both

generator and discriminator does not change.

Therefore, we need to balance the training speed of 2 networks by modifying the
learning rate, add more noise in one of the networks, etc. Also, Wasserstein loss is
designed to prevent discriminator is too good as the maximum output value of the
discriminator is not 1. It can be infinity, so it can still provide some information to

the generator for training.

95

Lack of Data

Because of the lack of data, we were investigating the amount of data required to
train a promising network. We tried to use different amounts of data from Fashion
MNIST to train a GAN in 100 epochs. With training data size 10000, we start to
retrieve a more realistic photo. However, it is worth noting that the images are only
28 x 28 dimensions and in grayscale. It means that if the dimension goes up, more

training data than 10000 may be needed. Below are the results.

oE
= 1
2

£ es Vs
N | ¥

e wp A5

L

PR sEHde g wiP
2

mhbdpBBEFbL S
DBy DR gy
is

Sl ki B

Liyscpme Bk k5 b
By s b ee o by B

B BHR 9= g N
Eipt, P"O0Encga s

Training Size 2000

96

g=g 1A vae Ew
=A== D@L §par?
Q@ §ei-my Ty
L fd@ayd §@l m@
cfles o g
a@E STy =Ms =
SESR R L N
St hmlia’y {@”
el {=mTTa =4
=Tl §.=d 4 T

Training Size 5000

A EYE = | @am=
{ = Tm§ § Tai
Eg {ymaud= J
=Y ewf=@
dEGa e |ER’) ==
meslifeE@=ma
Negl csgedsgY
L EY BE | &K &
e = d@femu i
I EcEEmE. | -

Training Size 10000

97

GIE@Y =]
Elm@u " ewdeY
= @ugVid | Ba
BDISa=2 =
= NEegmed | &
Ta wac@@E i 4
mlfufal-—-"3J
i@l ima
slimadlagea
c@md=g YYmj

20000

Training Size

98

Future Work

In this section, we provided some of the possible research that can be done.

Learning the overall structure of Chinese character and font style

without supervised learning

Pix2Pix network can learn both the font and the position of the Chinese character
stroke, but it needs both input and ground truth to be similar, and the dataset needs
to be precise and rigid to produce a quality image. Cycle GAN can learn the font
style and apply it to the input image, but it is unsupervised learning. Therefore,
Cycle GAN can just learn the characters of the font, but it cannot learn the structure
of the Chinese character. We hope that is a new method of network layer or model
and learn both font and the label about Chinese characters without supervised

learning.

Learn multiple font styles in one network

In our case of CycleGAN and Pix2pix, we can just build the one-to-one pair font
style changing. If we want to change it into other fonts, we need to train a new
model to fit the condition. We can try to use the category embedding method to

create an embedding space to fit many styles into the embedding space.

Solve real-life problem

As mentioned in the introduction, past calligraphers have their work related to
ancient Chinese characters. We can utilize GAN to extract their style and generate
their style in Chinese characters that is more common in the modern world. Besides,

ancient Chinese used Traditional Chinese. We can even translate to style to see

99

what it looks in Simplified Chinese. Furthermore, there are Asian countries that
have a history of calligraphy too, such as Japan and Korea. It will be interesting for
us to use these countries' calligraphy style and generate in Chinese characters or

vice versa.

100

Division of labor

This project is divided into two main parts, one is related to the emoji generation,

and the other part is focusing on the Chinese character font style changes. In this

FYP course, we did the emoji generation in the first semester and did the Chinese

character font style changing in the second semester. The following table

summarizes the labor of each of us:

Semester
1%t Semester

Emoji Generation

2nd Semester

Font Style

Changing

CHOI Ki Fung

Modify and test GAN,
DCGAN

Data gather and
preprocessing

Label the emoji

Create and process one-hot
encoding of emoji label
Create concept illustration
graph

Proofread and formatting

Build and test Pix2Pix
Web scraping
Data gather and

preprocessing

101

Tsang Ka Hung

Build and test the GAN and
DCGAN, CGAN

Test different loss function
Analyze the generated
emoji by eye observation
and loss comparison

Create the network

structure graphs

Font preprocessing
Preprocessing Pix2Pix
model input preprocessing

Modify and test Pix2Pix

e Create self-written
handwritten images

e Proofread and formatting

Build and test different
version of Cycle GAN
(ResNet, ResNet + U-net,
DenseNet)

Create self-written
handwritten images

Create the network

structure graph

The contribution of the report is summarized as follows:

Title Choi Ki Fung Tsang Ka Hung

Introduction 3 pages

Background 7 pages

Data Gathering 3 pages 3 pages

Data Preprocess 5 pages 4 pages

Generative Adversarial Network 7 pages

(GAN)

Conditional Generative Adversarial 6 pages 17 pages

Network (CGAN)

Pix2Pix 3 pages 8 pages

Cycle-Consistent Generative 2 pages 21 pages

Adversarial Network (Cycle GAN)

102

Difficulties and Solution 3 pages 3 pages
Future Work 2 pages 1 page

Total Page Count 34 pages 64 pages

Contribution Detail

My contribution to this project is mainly data gathering and preprocessing.

Data gathering is the process of obtaining raw data from the Internet or the real
world. For the first term, I have to search for any existing datasets that are useful
for us, which is the ideal situation. Then, if those datasets do not exist, I need to
gather those sparse data from the Internet. There are tons of resources on the Web;
I need to screen out those unqualified data, such as images with watermark,
inconsistent images, licensed images, and so on. Then, after filtering out a useful
dataset, I have to scrape the data in an automated process while categorizing them.
Regarding manual work, I labeled the description of the emojis for the CGAN and

written Chinese characters for the second semester.

Data preprocessing can be divided into Data Cleansing and Data Wrangling. Data
cleansing is to eliminate incomplete, inaccurate, incorrect, and irrelevant data. For
example, there are duplicated emoji and emoji with modifiers (skin tone modifiers
and sexuality modifiers); there are calligraphy images that are only part of a typical
Chinese character. On the other hand, Data wrangling is the process of mapping the
raw data to another state that is qualified to use. For instance, coupling emoji and
its description to the one-hot encoding format and resizing images into a consistent

dimension and format. I also leveraged scripting to do the batch processing work.

103

Besides, I also helped in model design and training. In the first semester, my partner
stuck in getting a good result in his DCGAN because of mode collapsing. I designed
another architecture of DCGAN and yielded a better result. In the training process,
I also trained the networks with different hyperparameters to crosscheck which

networks’ architecture is producing a more promising result.

104

Reference

Anoff. (2017, October 22). anoff/deep-emoji-gan. Retrieved from
https://github.com/anoff/deep-emoji-gan.

Arjovsky, Martin, Soumith, & Léon. (2017, December 6). Wasserstein GAN.
Retrieved from https://arxiv.org/abs/1701.07875.

Dabbas, E. (2019, October 22). Full Emoji Database.

Iamcal. (2019, August 8). iamcal/emoji-data. Retrieved from
https://github.com/iamcal/emoji-data.

Eriklindernoren. (2019, August 31). eriklindernoren/Keras-GAN. Retrieved from
https://github.com/eriklindernoren/Keras-GAN.

Goodfellow, L. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., ... Bengio, Y. (2014). Generative Adversarial Networks. Retrieved
from https://arxiv.org/abs/1406
2661

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). doi: 10.1109/cvpr.2016.90

Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786), 504-507. doi: 10.1126/science.1127647

Radford, A., Metz, L., & Chintala S. (2016). Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks.

Retrieved from https://arxiv.org/abs/1511.06434

105

https://arxiv.org/abs/1511.06434

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks
for Biomedical Image Segmentation. Lecture Notes in Computer Science
Medical Image Computing and Computer-Assisted Intervention — MICCAI
2015, 234-241. doi: 10.1007/978-3-319-24574-4 28

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets.
Retrieved from https://arxiv.org/abs/1411.1784

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation
with Conditional Adversarial Networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). doi:
10.1109/cvpr.2017.632

Quito, A. (2019, October 18). Why we can’t stop using the “face with tears of
joy” emoji. Quartz. Retrieved from https://qz.com/1726756/the-
psychology-behind-the-most
-popular-emoji/

Unicode. (2019). Emoji Counts, v12.0 [Chart]. Retrieved from Unicode website:
https://www.unicode.org/emoji/charts-12.0/emoji-counts.html

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE
International Conference on Computer Vision (ICCV). doi:
10.1109/iccv.2017.244

Zhang, Ren, Sun, & Jian. (2015). Deep Residual Learning for Image Recognition.

Retrieved from https://arxiv.org/abs/1512.03385

106

Huang, Gao, Liu, Maaten, van der, Laurens, Weinberger, & Kilian. (2018).
Densely Connected Convolutional Networks. Retrieved from

https://arxiv.org/abs/1608.06993

107

	1. Introduction
	1.1. Motivation
	1.1.1. Emoji
	1.1.2. Chinese Calligraphy
	1.2. Background
	1.2.1. Generative Adversarial Network (GAN)
	1.2.2. Conditional GAN (CGAN)
	1.2.3. Image-to-Image Translation with Conditional Adversarial Nets (Pix2Pix)
	1.2.4. Cycle-Consistent Adversarial Networks (Cycle GAN)
	1.2.5. Previous work

	2. Data Gathering
	2.1. Emoji
	Unicode
	Images
	Description

	2.2. Chinese Calligraphy
	3. Data Preprocessing
	3.1. Emoji
	Preprocessing the images of emojis
	3.1.1. CGAN Data Preprocessing
	Labels

	3.2. Chinese Calligraphy
	Example of the inconsistent dimension of raw collected images
	Example of the preprocessed images
	4. Neural Network Architecture Design
	4.1. Overview of Generative Adversarial Network (GAN)
	Overview of Generator
	Generator Detail
	Overview of Discriminator

	GAN Result
	4.2. Overview of Conditional Generative Adversarial Network (CGAN)
	Overview of Generator
	Generator Detail
	Overview of Discriminator
	Discriminator Detail

	CGAN Result and Improvement
	14 conditions CGAN
	58 conditions CGAN

	4.3. Overview of Pix2Pix
	Pix2Pix: Generator
	Pix2Pix: Discriminator

	Pix2Pix Methodology
	Encoder-decoder network
	U-net
	PatchGAN
	Loss function
	Adversarial loss (MiniMax Loss)

	Problem of Pix2Pix

	4.4. Overview of Cycle-Consistent Adversarial Network (Cycle GAN)
	Model design
	Cycle GAN: Generator (5 ResNet version)
	Cycle GAN: Discriminator

	Cycle GAN Methodology
	Residual block (ResNet)
	DenseNet
	Loss function
	Cycle Consistency Loss

	Cycle GAN Encoder + Decoder Only Version Result
	Cycle GAN U-net Version Result
	Cycle GAN Resnet Version Result
	Cycle GAN ResNet + U-net Version Result
	Cycle GAN DenseNet Version Result
	Non-Chinese character Result

	5. Difficulties and Solution
	The transparency layer of the image
	Either generator or discriminator is too good
	Lack of Data

	Future Work
	Learning the overall structure of Chinese character and font style without supervised learning
	Learn multiple font styles in one network
	Solve real-life problem

	Division of labor
	Contribution Detail

	Reference

